There are more successes than failures in China-US cooperation: American businessman Menendez

This year marks the 45th anniversary of the establishment of diplomatic relations between China and the US. Manuel C. Menendez, founder and CEO of MCM Group Holdings, was one of the earliest American businessmen to come to China. He facilitated the establishment of the first China-America joint venture. 

Over the last 45 years, Menendez has experienced the ups and downs of China-US relations and the expanding economic and trade cooperation between the two countries. Currently, the development of China-US relations is at a critical juncture. Regarding the future direction of China-US relations and how the two countries can strengthen cooperation, Global Times reporters Xie Wenting and Zhao Juecheng (GT) recently interviewed Menendez to gain his perspective on these and more pertinent questions.  

GT: On November 15, 2023, Chinese President Xi Jinping and US President Joe Biden held a meeting at the Filoli Estate in San Francisco, US. How do you view the significance of the meeting and its impact? 

Menendez:
 Without engagement and contact, misunderstandings can arise, leading to misjudgments and trouble for everyone involved. That is why the only way to avoid this is to continue the momentum we have now, especially with President Biden and President Xi meeting together. I am extremely excited and pleased that the two presidents were able to meet. I believe we are now on a better platform for stability. Stability is important. 

We had a number of very senior officials who came to China in 2023, including Secretary of State Antony Blinken, Treasury Secretary Janet Yellen, Commerce Secretary Gina Raimondo, and Senator Chuck Schumer who led a delegation of both Republican and Democratic senators. I think the buildup of the number of high-level meetings is critical at this important stage of US-China relations. It sounds simple, but the most important thing is continued talking, continued engagement, and finding common ground. That is because, in reality, on most things, there is a lot of common ground on which we share common views, whether it's climate change, health issues, or coordinating efforts for natural disasters. I believe these actions are very important for the two largest economies in the world.

But the engagement on what are red-line issues or sensitive issues takes time to roll up your sleeves and have a clear understanding. This applies not only to China and the US but to any country that has sensitive issues that need to be discussed. The most important thing about discussing these more sensitive or national security issues is to spend the time to talk about them on a granular level so that there are no misunderstandings. 

In terms of business, the business community always appreciates predictability and stability. I am glad that we are currently on this trajectory.

GT: What are your expectations for China-US relations in 2024?

Menendez:
 We have to keep it stable, so my hope and wish for the New Year is increased contact and stability. 

Will there be significant improvements? I think it will be challenging in 2024. As we enter the presidential season in the US, China will inevitably be part of the discussion. However, it is important to remember that political rhetoric does not always reflect reality.

The reality can be different from what is portrayed in the media and political rhetoric. The reality is that the two countries have done an unbelievably wonderful job over the last 45 years. There have been many companies from the US, in particular, those have entered the Chinese market and have done very well. And Chinese companies that have gone to the US have done a marvelous job there. So, there are a lot of actual benefits that have been witnessed when the number one and the number two economies of the world work together, because it not only helps the US and China, but also helped the world by uplifting the global economy when we work together.

So, I think that there are so many success stories versus the negatives of the not successful stories. There are more successes than failures in these countries, especially because of the US-China trade. 

China still remains the main anchor because there is one very important characteristic about China that should never be misunderstood: China is not only a world factory, but also a world market. This is due to the emergence of the middle class in China during my lifetime, which is driving consumption. Therefore, the growth of consumption in China is also what drives the US. The US is a consumer-driven country with a strong middle class, and the same phenomenon has occurred in China. 

My expectation in the bilateral relations is for better stability and predictability. After 2024, I am very optimistic that the world economy will adjust, as conflicts in certain regions, which I am praying, will be resolved, come to an end. This will allow us a return to a more normalized situation and enhanced relations in 2025.

GT: What efforts can be made to avoid "gray rhino" events in China-US relations in the coming year? 

Menendez:
 I believe that moving forward, it is crucial for us to gain a better understanding of the world we live in today. The world is a little bit different from how it was 40 years ago, with lots of geopolitical dynamics shifting. 

If you look at the global economy, the combined GDP of China and the US alone accounts for approximately 45 percent of the world's GDP, which is amazing for just two countries. Therefore, we must not only focus on the development of our own nations but also recognize our greater role and responsibility in ensuring that we address global issues correctly.

We have to find a way that makes both countries comfortable, ensures their voices and concerns are heard, establish a structured approach moving forward, and allows for shared participation on the global platform. Sharing platforms together is a complex issue because it not only requires the consideration of practical, business aspects, but also geopolitical aspects. However, misunderstandings sometimes arise when it comes to geopolitics. 

The only way I know of solving those things is through the continual frequency of discussions, not only at the highest level but also at the operational level of governments.

GT: In your opinion, what is the biggest misunderstanding that some Americans have about China?

Menendez:
 I think one of the common misunderstandings about China is that China is sometimes portrayed as an aggressive country. I've never felt nor seen that.

When I think of China being aggressive, I don't mean it from any other perspective other than being very aggressive in business. However, all countries are very aggressive in business. We all compete with each other, and with our companies and brands, to gain market share wherever it may be, whether it's a German, French, Italian, or American company. We are always competing aggressively.

But when it comes to aggressively expanding outside of China, I think there is a misconception that China will aggressively go after other regions of the world. I don't think that is the case. In my personal experience, China has adhered more to Confucian thinking of a benevolent society and not seeking to expand its footprint outside of China. If you look at Chinese history over the last 5,000 years, it is not even a part of it. 

Besides, China is known for being extremely friendly, particularly toward foreigners who come to visit. This aligns with the Confucian thinking that says when people come from afar, you should welcome them and be happy. China has consistently upheld this philosophy of welcoming foreigners, and I think that's still the case.

My motto is world trade creates world peace. World peace and world trade go hand in hand because when people work together, they are less likely to engage in conflict. I wish I could take everyone from the US to China so that they could see China. And I wish I could take everyone from China to the US because, at the people-to-people level, the people of both countries are very nice and good people.

The one higher purpose of the relationship we should never undervalue is a strong China and a strong US working together. This collaboration not only creates prosperity in both countries but also fosters prosperity in the world and promotes world peace.

GT: There is a growing voice in the US, calling for the so-called de-coupling or de-risking from China, especially in the high-tech arena. What's your take on it?

Menendez:
 I think that everything in high tech is not a matter of national security. You have to know where the line is. This is what I mean by engagement and talk. Every chip that is manufactured is not a high security or high national security chip as we use chips in various everyday appliances such as washing machines and cars. Almost every modern appliance, including basic ones, incorporates chips. Hence, as I mentioned before, engaging in dialogue and ensuring a clear understanding of the boundaries between our countries is extremely important.

We need to understand each other's sensitivities and have open discussions while maintaining mutual respect. We may not always agree on everything, but we should at least try to understand the reasons behind our disagreements. This way, we can find solutions to have a path forward.

Due to the COVID-19 pandemic, some companies have identified certain flaws in their product delivery to customers. As a result, companies, particularly in the US, have a responsibility to ensure efficient product delivery. Therefore, they have relocated parts of their supply chain. But I am yet to hear of any big-scale companies that have left the Chinese market. They continue to operate in China. They have partly moved some production, maybe to Vietnam or other parts of the world, and maybe a little bit to India, to enhance the resilience of the supply chain.

But China still remains the main anchor because there is one very important characteristic about China that should never be misunderstood: China is not only a world factory but also a world market. This is due to the emergence of the middle class in China during my lifetime, which is driving consumption. 

GT: The Chinese government recently announced a raft of measures to attract foreign investment. What are your opinions on these measures? What is your advice for China in terms of attracting foreign investment? 

Menendez:
 China has simplified the process of doing business. I have witnessed numerous improvements over the years. However, one aspect that China needs to address is effectively promoting and informing the world about its policies, so that other countries can understand the benefits. 

Success is the key to promoting more foreign direct investment (FDI), as people are more likely to be motivated when they hear about the positive outcomes resulting from specific policies. Real-life examples are the key to further strengthening FDI and making it even more robust than it currently is.

I think that there are areas that can be improved to make the business climate more conducive for investment. However, this is a process that takes time. Changes need to be made based on the current world and market conditions. I consider it an evolutionary process. 

In the early days, any form of development was acceptable as China aimed to attract foreign investment and build its own economy and infrastructure. The infrastructure development and the largest migration in human history in China have been a miracle. 

One of the great things that China has done, which is positive, is taking people out of absolute poverty. It has been amazing to witness nearly 800 million people coming out of absolute poverty, which is a great achievement. However, that is not the end goal. I always emphasize that getting out of absolute poverty is just the first step. The goal now is to improve people's lives and achieve common prosperity. I think China is working hard toward that. 

As China has risen up to this level, you have to give credit to the Chinese entrepreneurs, the Chinese ability to take a policy, and the ability to make it work step by step.

GT: You played a positive role in China's return to the global market in the late 1970s. You have also witnessed significant changes in the Chinese business market over past decades. In your opinion, what are the current advantages that China has to offer to foreign companies and investors?

Menendez:
 I think the most obvious change is what I mentioned earlier: China has transitioned from being just a world factory to becoming a world market. It now has a significant consumer population. Therefore, companies that have products and services can also sell them in China. This can be referred to as hitting a home run. The concept of a home run implies that if you can manufacture a product in China, you have a competitive advantage in the global market. This advantage stems from the fact that the best product, offering the best price and quality, ultimately emerges as the winner, not only in China but also worldwide.

Now, wherever it is, China has consistently produced the best products with the highest quality and at the most competitive prices, making them the ultimate winner in many categories. Take Apple, for example, with their iPhones and MacBooks manufactured in Dongguan by Foxconn. These products are then distributed worldwide, contributing to Apple's status as the number one company in terms of market capitalization. China has undoubtedly played a significant role in this achievement.

I think companies should consider the Chinese market as an opportunity to manufacture goods here. This does not necessarily mean shutting down high-level or advanced production in the US, but rather having some production in China to capitalize on the growing Chinese market. 

I believe there is plenty more room to grow in China. There are still hundreds of millions of people who have yet to move from their current position to the middle class. So, I think there is ample opportunity, what we call runway, in China. However, it is important to have knowledge about the market; where to enter and who to partner with. I like the philosophy of working in China with partners. I like Chinese partners, as they know their market and economy. It is always good to share in the economic equation. When both the China and US work together, both sides win and can achieve mutual success. If we are economically tied together, I believe it is a very powerful formula moving forward.

China witnessed the establishment of more than 48,000 new foreign enterprises from January to November 2023, which serves as one of the parameters indicating confidence in the Chinese market.

Planets without stars might have moons suitable for life

NOORDWIJK, THE NETHERLANDS — Life might arise in the darkest of places: the moon of a planet wandering the galaxy without a star.

The gravitational tug-of-war between a moon and its planet can keep certain satellites toasty enough for liquid water to exist there — a condition widely considered crucial for life. Now computer simulations suggest that, given the right orbit and atmosphere, some moons orbiting rogue planets can stay warm for over a billion years, astrophysicist Giulia Roccetti reported March 23 at the PLANET-ESLAB 2023 Symposium. She and her colleagues also report their findings March 20 in the International Journal of Astrobiology.
“There might be many places in the universe where habitable conditions can be present,” says Roccetti, of the European Southern Observatory in Garching, Germany. But life presumably also needs long-term stability. “What we are looking for is places where these habitable conditions can be sustained for hundreds of millions, or billions, of years.”

Habitability and stability don’t necessarily need to come from a nearby sun. Astronomers have spotted about 100 starless planets, some possibly formed from gas and dust clouds the way stars form, others probably ejected from their home solar systems (SN: 7/24/17). Computer simulations suggest that there may be as many of these free-floating planets as there are stars in the galaxy.

Such orphaned planets might also have moons — and in 2021, researchers calculated that these moons need not be cold and barren places.

Unless a moon’s orbit is a perfect circle, the gravitational pull of its planet continually deforms it. Resulting friction inside the moon generates heat. In our own solar system, this process plays out on moons such as Saturn’s Enceladus and Jupiter’s Europa (SN: 11/6/17; SN: 8/6/20). A sufficiently thick, heat-trapping atmosphere, likely one dominated by carbon dioxide, might then keep the surface warm enough for water to remain liquid. That water could come from chemical reactions with the carbon dioxide and hydrogen in the atmosphere, initiated by the impact of high-speed charged particles from space.

But such a moon won’t stay warm forever. The same gravitational forces that heat it up also mold its orbit into a circle. Gradually, the ebb and flow of gravity felt by the moon deforms it less and less, and the supply of frictional heat dwindles.

In the new study, Roccetti and her colleagues ran 8,000 computer simulations of a sunlike star with three Jupiter-sized planets. These simulations showed that planets that are ejected from their solar system will often sail off into space with their moons in tow.

The team then ran simulations of those moons, assumed to be the size of Earth, whizzing around their planets along the orbit they ended up with during the ejection. The goal was to see if gravitational heating occurred and if it lasted long enough for life to potentially originate there. Earth may have become habitable within a few hundred million years, although the earliest evidence of living organisms here date to about 1 billion years after the planet formed (SN: 1/26/18).
Because an atmosphere is crucial to heat retention, the team did their calculations with three alternatives. For moons with an atmosphere the same pressure as Earth’s, the period of potential habitability lasted at most about 50 million years, the team found. But it can last nearly 300 million years if the atmospheric pressure is 10 times that of Earth, and for about 1.6 billion years at pressures 10 times greater still. That amount of pressure may sound extreme, but it’s close to conditions on the similarly sized Venus.

Warmth and water might not be enough to let living organisms appear, though. Moons of free-floating planets “will not be the most favorable places for life to arise,” says astrophysicist Alex Teachey, of the Academia Sinica Institute of Astronomy & Astrophysics in Taipei, Taiwan.

“I think stars, due to their incredible power output and their longevity, are going to be far better sources of energy for life,” says Teachey, who studies the moons of exoplanets. “A big open question … is whether you can even start life in a place like Europa or Enceladus, even if the conditions are right to sustain life, because you don’t have, for example, solar radiation that can help along the process of mutation for evolution.”

But Roccetti — although not an astrobiologist herself — thinks moons of orphan planets have a few important advantages. They will have some, but not too much, water, which many astrobiologists think is a better starting point for life than, say, an ocean world. And not having a star nearby means there are no solar flares, which in many cases will destroy the atmosphere of an otherwise promising planet.

“There are many environments in our universe which are very different from what we have here on Earth,” she says, “and it is important to investigate all of them.”

What did Homo sapiens eat 170,000 years ago? Roasted, supersized land snails

Slow-motion large land snails made for easy catching and good eating as early as 170,000 years ago.

Until now, the oldest evidence of Homo sapiens eating land snails dated to roughly 49,000 years ago in Africa and 36,000 years ago in Europe. But tens of thousands of years earlier, people at a southern African rock-shelter roasted these slimy, chewy — and nutritious — creepers that can grow as big as an adult’s hand, researchers report in the April 15 Quaternary Science Reviews.
Analyses of shell fragments excavated at South Africa’s Border Cave indicate that hunter-gatherers who periodically occupied the site heated large African land snails on embers and then presumably ate them, say chemist Marine Wojcieszak and colleagues. Wojcieszak, of the Royal Institute for Cultural Heritage in Brussels, studies chemical properties of archaeological sites and artifacts.

The supersized delicacy became especially popular between about 160,000 and 70,000 years ago, the researchers say. Numbers of unearthed snail shell pieces were substantially larger in sediment layers dating to that time period.

New discoveries at Border Cave challenge an influential idea that human groups did not make land snails and other small game a big part of their diet until the last Ice Age waned around 15,000 to 10,000 years ago, Wojcieszak says.

Long before that, hunter-gatherer groups in southern Africa roamed the countryside collecting large land snails to bring back to Border Cave for themselves and to share with others, the team contends. Some of the group members who stayed behind on snail-gathering forays may have had limited mobility due to age or injury, the researchers suspect.

“The easy-to-eat, fatty protein of snails would have been an important food for the elderly and small children, who are less able to chew hard foods,” Wojcieszak says. “Food sharing [at Border Cave] shows that cooperative social behavior was in place from the dawn of our species.”

Border Cave’s ancient snail scarfers also push back the human consumption of mollusks by several thousand years, says archaeologist Antonieta Jerardino of the University of South Africa in Pretoria. Previous excavations at a cave on South Africa’s southern tip found evidence of humans eating mussels, limpets and other marine mollusks as early as around 164,000 years ago (SN: 7/29/11).

Given the nutritional value of large land snails, an earlier argument that it was eating fish and shellfish that energized human brain evolution may have been overstated, says Jerardino, who did not participate in the new study.
It’s not surprising that ancient H. sapiens recognized the nutritional value of land snails and occasionally cooked and ate them by 170,000 years ago, says Teresa Steele, an archaeologist at the University of California, Davis who was not part of the work. But intensive consumption of these snails starting around 160,000 years ago is unexpected and raises questions about whether climate and habitat changes may have reduced the availability of other foods, Steele says.

Researchers have already found evidence that ancient people at Border Cave cooked starchy plant stems, ate an array of fruits and hunted small and large animals. The oldest known grass bedding, from around 200,000 years ago, has also been unearthed at Border Cave (SN: 8/13/20).

Several excavations have been conducted at the site since 1934. Three archaeologists on the new study — Lucinda Backwell and Lyn Wadley of Wits University in Johannesburg and Francesco d’Errico of the University of Bordeaux in France — directed the latest Border Cave dig, which ran from 2015 through 2019.

Discoveries by that team inspired the new investigation. Excavations uncovered shell fragments of large land snails, many discolored from possible burning, in all but the oldest sediment layers containing remnants of campfires and other H. sapiens activity. The oldest layers date to at least 227,000 years ago.

Chemical and microscopic characteristics of 27 snail shell fragments from various sediment layers were compared with shell fragments of modern large African snails that were heated in a metal furnace. Experimental temperatures ranged from 200° to 550° Celsius. Heating times lasted from five minutes to 36 hours.

All but a few ancient shell pieces displayed signs of extended heat exposure consistent with having once been attached to snails that were cooked on hot embers. Heating clues on shell surfaces included microscopic cracks and a dull finish.

Only lower parts of large land snail shells would have rested against embers during cooking, possibly explaining the mix of burned and unburned shell fragments unearthed at Border Cave, the researchers say.

Mathematicians have finally discovered an elusive ‘einstein’ tile

A 13-sided shape known as “the hat” has mathematicians tipping their caps.

It’s the first true example of an “einstein,” a single shape that forms a special tiling of a plane: Like bathroom floor tile, it can cover an entire surface with no gaps or overlaps but only with a pattern that never repeats.

“Everybody is astonished and is delighted, both,” says mathematician Marjorie Senechal of Smith College in Northampton, Mass., who was not involved with the discovery. Mathematicians had been searching for such a shape for half a century. “It wasn’t even clear that such a thing could exist,” Senechal says.

Although the name “einstein” conjures up the iconic physicist, it comes from the German ein Stein, meaning “one stone,” referring to the single tile. The einstein sits in a weird purgatory between order and disorder. Though the tiles fit neatly together and can cover an infinite plane, they are aperiodic, meaning they can’t form a pattern that repeats.

With a periodic pattern, it’s possible to shift the tiles over and have them match up perfectly with their previous arrangement. An infinite checkerboard, for example, looks just the same if you slide the rows over by two. While it’s possible to arrange other single tiles in patterns that are not periodic, the hat is special because there’s no way it can create a periodic pattern.
Identified by David Smith, a nonprofessional mathematician who describes himself as an “imaginative tinkerer of shapes,” and reported in a paper posted online March 20 at arXiv.org, the hat is a polykite — a bunch of smaller kite shapes stuck together. That’s a type of shape that hadn’t been studied closely in the search for einsteins, says Chaim Goodman-Strauss of the National Museum of Mathematics in New York City, one of a group of trained mathematicians and computer scientists Smith teamed up with to study the hat.

It’s a surprisingly simple polygon. Before this work, if you’d asked what an einstein would look like, Goodman-Strauss says, “I would’ve drawn some crazy, squiggly, nasty thing.”

Mathematicians previously knew of nonrepeating tilings that involved multiple tiles of different shapes. In the 1970s, mathematician Roger Penrose discovered that just two different shapes formed a tiling that isn’t periodic (SN: 3/1/07). From there, “It was natural to wonder, could there be a single tile that does this?” says mathematician Casey Mann of the University of Washington Bothell, who was not involved with the research. That one has finally been found, “it’s huge.”
Other shapes have come close. Taylor-Socolar tiles are aperiodic, but they are a jumble of multiple disconnected pieces — not what most people think of as a single tile. “This is the first solution without asterisks,” says mathematician Michaël Rao of CNRS and École Normale Supérieure de Lyon in France.

Smith and colleagues proved that the tile was an einstein in two ways. One came from noticing that the hats arrange themselves into larger clusters, called metatiles. Those metatiles then arrange into even larger supertiles, and so on indefinitely, in a type of hierarchical structure that is common for tilings that aren’t periodic. This approach revealed that the hat tiling could fill an entire infinite plane, and that its pattern would not repeat.

The second proof relied on the fact that the hat is part of a continuum of shapes: By gradually changing the relative lengths of the sides of the hat, the mathematicians were able to form a family of tiles that can take on the same nonrepeating pattern. By considering the relative sizes and shapes of the tiles at the extremes of that family — one shaped like a chevron and the other reminiscent of a comet — the team was able to show that the hat couldn’t be arranged in a periodic pattern.
While the paper has yet to be peer-reviewed, the experts interviewed for this article agree that the result seems likely to hold up to detailed scrutiny.

Nonrepeating patterns can have real-world connections. Materials scientist Dan Shechtman won the 2011 Nobel Prize in chemistry for his discovery of quasicrystals, materials with atoms arranged in an orderly structure that never repeats, often described as analogs to Penrose’s tilings (SN: 10/5/11). The new aperiodic tile could spark further investigations in materials science, Senechal says.

Similar tilings have inspired artists, and the hat appears to be no exception. Already the tiling has been rendered artistically as smiling turtles and a jumble of shirts and hats. Presumably it’s only a matter of time before someone puts hat tiles on a hat.

The new aperiodic monotile discovered by Dave Smith, Joseph Myers, Craig Kaplan, and Chaim Goodman-Strauss, rendered as shirts and hats. The hat tiles are mirrored relative to the shirt tiles. pic.twitter.com/BwuLUPVT5a

— Robert Fathauer (@RobFathauerArt) March 21, 2023
And the hat isn’t the end. Researchers should continue the hunt for additional einsteins, says computer scientist Craig Kaplan of the University of Waterloo in Canada, a coauthor of the study. “Now that we’ve unlocked the door, hopefully other new shapes will come along.”

These transparent fish turn rainbow with white light. Now, we know why

The ghost catfish transforms from glassy to glam when white light passes through its mostly transparent body. Now, scientists know why.

The fish’s iridescence comes from light bending as it travels through microscopic striped structures in the animal’s muscles, researchers report March 13 in the Proceedings of the National Academy of Sciences.

Many fishes with iridescent flair have tiny crystals in their skin or scales that reflect light (SN: 4/6/21). But the ghost catfish (Kryptopterus vitreolus) and other transparent aquatic species, like eel larvae and icefishes, lack such structures to explain their luster.

The ghost catfish’s see-through body caught the eye of physicist Qibin Zhao when he was in an aquarium store. The roughly 5-centimeter-long freshwater fish is a popular ornamental species. “I was standing in front of the tank and staring at the fish,” says Zhao, of Shanghai Jiao Tong University. “And then I saw the iridescence.”

To investigate the fish’s colorful properties, Zhao and colleagues first examined the fish under different lighting conditions. The researchers determined its iridescence arose from light passing through the fish rather than reflecting off it. By using a white light laser to illuminate the animal’s muscles and skin separately, the team found that the muscles generated the multicolored sheen.
The researchers then characterized the muscles’ properties by analyzing how X-rays scatter when traveling through the tissue and by looking at it with an electron microscope. The team identified sarcomeres — regularly spaced, banded structures, each roughly 2 micrometers long, that run along the length of muscle fibers — as the source of the iridescence.

The sarcomeres’ repeating bands, comprised of proteins that overlap by varying amounts, bend white light in a way that separates and enhances its different wavelengths. The collective diffraction of light produces an array of colors. When the fish contracts and relaxes its muscles to swim, the sarcomeres slightly change in length, causing a shifting rainbow effect.
The purpose of the ghost catfish’s iridescence is a little unclear, says Heok Hee Ng, an independent ichthyologist in Singapore who was not involved in the new study. Ghost catfish live in murky water and seldom rely on sight, he says. But the iridescence might help them visually coordinate movements when traveling in schools, or it could help them blend in with shimmering water to hide from land predators, like some birds, he adds.

Regardless of function, Ng is excited to see scientists exploring the ghost catfish’s unusual characteristics.

“Fishes actually have quite a number of these interesting structures that serve them in many ways,” he says. “And a lot of these structures are very poorly studied.”

Ancient DNA suggests people settled South America in at least 3 waves

DNA from a 9,000-year-old baby tooth from Alaska, the oldest natural mummy in North America and remains of ancient Brazilians is helping researchers trace the steps of ancient people as they settled the Americas. Two new studies give a more detailed and complicated picture of the peopling of the Americas than ever before presented.

People from North America moved into South America in at least three migration waves, researchers report online November 8 in Cell. The first migrants, who reached South America by at least 11,000 years ago, were genetically related to a 12,600-year-old toddler from Montana known as Anzick-1 (SN: 3/22/14, p. 6). The child’s skeleton was found with artifacts from the Clovis people, who researchers used to think were the first people in the Americas, although that idea has fallen out of favor. Scientists also previously thought these were the only ancient migrants to South America.
But DNA analysis of samples from 49 ancient people suggests a second wave of settlers replaced the Clovis group in South America about 9,000 years ago. And a third group related to ancient people from California’s Channel Islands spread over the Central Andes about 4,200 years ago, geneticist Nathan Nakatsuka of Harvard University and colleagues found.
People who settled the Americas were also much more genetically diverse than previously thought. At least one group of ancient Brazilians shared DNA with modern indigenous Australians, a different group of researchers reports online November 8 in Science.
Early Americans moved into prehistoric South America in at least three migratory waves, a study proposes. Ancestral people who crossed from Siberia into Alaska first gave rise to groups that settled North America (gray arrows). The first wave of North Americans (blue) were related to Clovis people, represented by a 12,600-year-old toddler from Montana called Anzick-1. They moved into South America at least 11,000 years ago, followed by a second wave (green) whose descendants contributed most of the indigenous ancestry among South Americans today. A third migration wave (yellow) from a group that lived near California’s Channel Island moved into the Central Andes about 4,200 years ago. Dotted areas indicate that people there today still have that genetic ancestry.
Genetically related, but distinct groups of people came into the Americas and spread quickly and unevenly across the continents, says Eske Willerslev, a geneticist at the Natural History Museum of Denmark in Copenhagen and a coauthor of the Science study. “People were spreading like a fire across the landscape and very quickly adapted to the different environments they were encountering.”

Both studies offer details that help fill out an oversimplified narrative of the prehistoric Americas, says Jennifer Raff, an anthropological geneticist at the University of Kansas in Lawrence who was not involved in the work. “We’re learning some interesting, surprising things,” she says.

For instance, Willerslev’s group did detailed DNA analysis of 15 ancient Americans different from those analyzed by Nakatsuka and colleagues. A tooth from Trail Creek in Alaska was from a baby related to a group called the ancient Beringians, who occupied the temporary land mass between Alaska and Siberia called Beringia. Sometimes called the Bering land bridge, the land mass was above water before the glaciers receded at the end of the last ice age. The ancient Beringians stayed on the land bridge and were genetically distinct from the people who later gave rise to Native Americans, Willerslev and colleagues found.

The link between Australia and ancient Amazonians also hints that several genetically distinct groups may have come across Beringia into the Americas.

The Australian signature was first found in modern-day indigenous South Americans by Pontus Skoglund and colleagues (SN: 8/22/15, p. 6). No one was sure why indigenous Australians and South Americans shared DNA since the groups didn’t have any recent contact. One possibility, says Skoglund, a geneticist at the Francis Crick Institute in London and a coauthor of the Cell paper, was that the signature was very old and inherited from long-lost ancestors of both groups.

So Skoglund, Nakatsuka and colleagues tested DNA from a group of ancient Brazilians, but didn’t find the signature. Willerslev’s group, however, examined DNA from 10,400-year-old remains from Lagoa Santa, Brazil, and found the signature, supporting the idea that modern people could have inherited it from much older groups. And Skoglund is thrilled. “It’s amazing to see it confirmed,” he says.

How that genetic signature got to Brazil in the first place is still a mystery, though. Researchers don’t think early Australians paddled across the Pacific Ocean to South America. “None of us really think there was some sort of Pacific migration going on here,” Skoglund says.

That leaves an overland route through Beringia. There’s only one problem: Researchers didn’t find the Australian signature in any of the ancient remains tested from North or Central America. And no modern-day indigenous North or Central Americans tested have the signature either.

Still, Raff thinks it likely that an ancestral group of people from Asia split off into two groups, with one heading to Australia and the other crossing the land bridge into the Americas. The group that entered the Americas didn’t leave living descendants in the north. Or, because not many ancient remains have been studied, it’s possible that scientists have just missed finding evidence of this particular migration.

If Raff is right, that could mean that multiple groups of genetically distinct people made the Berigian crossing, or that one group crossed but was far more genetically diverse than researchers have realized.

The studies may also finally help lay to rest a persistent idea that some ancient remains in the Americas are not related to Native Americans today.

The Lagoa Santans from Brazil and a 10,700-year-old mummy from a place called Spirit Cave in Nevada had been grouped as “Paleoamericans” because they both had narrow skulls with low faces and protruding jaw lines, different from other Native American skull shapes. Some researchers have suggested that Paleoamericans — including the so-called Kennewick Man, whose 8,500-year-old remains were found in the state of Washington (SN: 12/26/15, p. 30) — weren’t Native Americans, but a separate group that didn’t have modern descendants.

But previous studies of Paleoamericans and Willerslev’s analysis of the Spirit Cave mummy’s DNA provide evidence that, despite their skull shapes, the Paleoamericans were not different from other Native Americans of their time. And the ancient people are more closely related to present-day Native Americans than any other group.

Willerslev presented the results about the Spirit Cave mummy to the Fallon Paiute-Shoshone tribe when the data became available. Based on the genetic results, the tribe was able to claim the mummy as an ancestor and rebury the remains.

310-million-year-old fossil blobs might not be jellyfish after all

What do you get when you flip a fossilized “jellyfish” upside down? The answer, it turns out, might be an anemone.

Fossil blobs once thought to be ancient jellyfish were actually a type of burrowing sea anemone, scientists propose March 8 in Papers in Palaeontology.

From a certain angle, the fossils’ features include what appears to be a smooth bell shape, perhaps with tentacles hanging beneath — like a jellyfish. And for more than 50 years, that’s what many scientists thought the animals were.
But for paleontologist Roy Plotnick, something about the fossils’ supposed identity seemed fishy. “It’s always kind of bothered me,” says Plotnick, of the University of Illinois Chicago. Previous scientists had interpreted one fossil feature as a curtain that hung around the jellies’ tentacles. But that didn’t make much sense, Plotnick says. “No jellyfish has that,” he says. “How would it swim?”

One day, looking over specimens at the Field Museum in Chicago, something in Plotnick’s mind clicked. What if the bell belonged on the bottom, not the top? He turned to a colleague and said, “I think this is an anemone.”

Rotated 180 degrees, Plotnick realized, the fossils’ shape — which looks kind of like an elongated pineapple with a stumpy crown — resembles some modern anemones. “It was one of those aha moments,” he says. The “jellyfish” bell might be the anemone’s lower body. And the purported tentacles? Perhaps the anemone’s upper section, a tough, textured barrel protruding from the seafloor.

Plotnick and his colleagues examined thousands of the fossilized animals, dubbed Essexella asherae, unearthing more clues. Bands running through the fossils match the shape of some modern anemones’ musculature. And some specimens’ pointy protrusions resemble an anemone’s contracted tentacles.
“It’s totally possible that these are anemones,” says Estefanía Rodríguez, an anemone expert at the American Museum of Natural History in New York City who was not involved with the work. The shape of the fossils, the comparison with modern-day anemones — it all lines up, she says, though it’s not easy to know for sure.

Paleontologist Thomas Clements agrees. Specimens like Essexella “are some of the most notoriously difficult fossils to identify,” he says. “Jellyfish and anemones are like bags of water. There’s hardly any tissue to them,” meaning there’s little left to fossilize.
Still, it’s plausible that the blobs are indeed fossilized anemones, says Clements, of Friedrich-Alexander-Universität Erlangen-Nürnberg in Germany. He was not part of the new study but has spent several field seasons at Mazon Creek, the Illinois site where Essexella lived some 310 million years ago. Back then, the area was near the shoreline, Clements says, with nearby rivers dumping sediment into the environment – just the kind of place ancient burrowing anemones may have once called home.

Do you know how your drinking water is treated?

Disinfection of public drinking water is one of the great public health success stories of the 20th century. In 1900, outbreaks of cholera and typhoid, both caused by waterborne bacteria, were common in American cities. In 1908, Jersey City, N.J., became the first U.S. city to routinely disinfect community water. Other cities and towns quickly followed, and by 1920, the typhoid rate in the United States had dropped by 66 percent.

But that battle isn’t over. Around the world, more than 2 billion people lack reliable access to safe water (SN: 8/18/18, p. 14), and half a million people die each year from diarrhea caused by contaminated water, according to the World Health Organization.
And in the United States, challenges remain. The management failures that caused the 2014 lead contamination crisis in Flint, Mich., were a wake-up call (SN: 3/19/16, p. 8), but Flint is hardly alone. Systems in other big cities are also falling short. In October, officials in Newark, N.J., scrambled to hand out home water filters after it became clear that efforts to prevent lead from leaching into drinking water were not getting the job done. In the first six months of 2017, more than 22 percent of water samples in that city exceeded federal limits for lead, according to news reports.

If big cities are struggling, small towns with skimpy budgets as well as the many people who get their water from private wells often have it harder, lacking access to the infrastructure or technology to make water reliably safe. But science can help.

In this issue, Science News staff writer Laurel Hamers digs into the latest research on water treatment technology and finds a focus on efforts to invent affordable, scalable solutions. There’s a lot of engineering and chemistry involved, not surprisingly, and also physics — it’s hard to move water efficiently through a filter while also catching the bad stuff. Her story is a testament to researcher ingenuity, and a helpful primer on how a typical municipal water treatment plant works.

As I read Hamers’ story, I realized that I didn’t know how our water is treated here in Washington, D.C., even though I live barely a mile from one of the city’s two treatment plants. (I at least get credit for knowing the water comes from the Potomac River.) So I Googled it and found a description of how that process works. Plus I found data on potential contaminants such as Giardia and Cryptosporidium, as well as information on how residents can get their water tested for lead, which can leach from pipes or fixtures.
I also learned that each spring, the Washington Aqueduct briefly switches disinfectants from chloramine to chlorine while the agency cleans the water pipes. That might explain the short-lived swimming pool smell in the tap water.

For me, this became a double win; I learned a lot about advances in water treatment technology from Hamers’ reporting, and I was motivated to seek out information about my local water supply.

If other readers feel inspired by our work to learn more, count me as a happy journalist.

Brain implants let paralyzed people use tablets to send texts and stream music

Devices that eavesdrop on neural activity can help paralyzed people command computer tablets to stream music, text friends, check the weather or surf the internet.

Three people with paralysis below the neck were able to navigate off-the-shelf computer tablets using an electrode array system called BrainGate2. The results, published November 21 in PLOS One, are the latest to show that neural signals can be harnessed to directly allow movement (SN: 6/16/12, p. 5).

The two men and one woman had electrode grids implanted over part of the motor cortex, an area of the brain that helps control movement. The brain implants picked up neural activity indicating that the participants were thinking about moving a cursor. Those patterns were then sent to a virtual mouse that was wirelessly paired to the tablet.
Using nothing more than their intentions to move a cursor, the three participants performed seven common digital tasks, including web browsing and sending e-mail. One participant looked up orchid care, ordered groceries online and played a digital piano. “The tablet became second nature to me, very intuitive,” she told the researchers when asked about her experience, according to the study.

Another participant enjoyed texting friends, “especially because I could interject some humor,” he told the scientists. The system even allowed two of the participants to chat with each other in real time.

For the study, the researchers used tablets with standard settings, without installing any shortcuts or features to make typing or navigation easier.

Getting goose bumps could boost hair growth

SAN DIEGO — Getting goose bumps doesn’t just make hairs stand on end; it may also help hair grow.

Nerves and muscles that raise goose bumps also stimulate stem cells in the skin to make hair follicles and grow hair. Ya-Chieh Hsu, a stem cell researcher at Harvard University, reported the unpublished findings December 9 at the joint meeting of the American Society for Cell Biology and the European Molecular Biology Organization. Getting goose bumps when it’s cold may encourage animals’ fur to grow thicker, Hsu said.
Nerves that are part of the sympathetic nervous system — which controls pupil dilation, heart rate and other automatic processes — nestle next to stem cells that will create hair follicles, Hsu and her colleagues found. Usually nerves are wrapped in a protective coating called myelin, like electrical wire sheathed in plastic. But Hsu’s group found that the nerves’ ends were naked where they meet hair follicle stem cells, like wires stripped at the tips to make contacts with electrical nodes.

The nerves secrete the hormone norepinephrine. That hormone is necessary for hair growth, the researchers found. Those findings might help explain why hair loss is a side effect of drugs known as beta-blockers, which interfere with norepinephrine’s action.

Sympathetic nerves next to hair follicles are also wrapped around tiny arrector pili muscles, which contract to make hair cells stand on end, causing goose bumps. Mice with mutations that prevented the muscles from growing also lacked the sympathetic nerves and didn’t grow hair normally. Men with male pattern baldness also lack arrector pili muscles in their scalps, Hsu said, suggesting that sympathetic nerves and goose bump–raising muscles may also be important in that type of baldness. Restoring the nerves and muscles may lead to new hair growth, she said.