Kepler telescope doubles its count of known exoplanets

The galaxy is starting to feel a little crowded. Over 1,000 planets have just been added to the roster of worlds known to orbit other stars in the Milky Way, researchers announced May 10 at a news briefing. This is the largest number of exoplanets announced at once.

Most of the 1,284 worlds are larger than Earth but smaller than Neptune. Many of those are probably big balls of gas. But over 100 of the new discoveries are smaller than 1.2 times the diameter of Earth. “Those are almost certainly rocky in nature,” said Timothy Morton, an astrophysicist at Princeton University. Nine planets also lie within the habitable zone, the distance from the star where liquid water could conceivably collect on the surface of the planet. Morton and colleagues detail their findings in the May 10 Astrophysical Journal.
This announcement roughly doubles the number of planets discovered by NASA’s planet-hunting workhorse, the Kepler space telescope, which has now found 2,325 exoplanets. Kepler spent nearly four years staring at about 150,000 stars in the constellations Cygnus and Lyra, watching for subtle dips in starlight as planets crossed in front of their suns. While Kepler has since moved on to other investigations (SN: 6/28/14, p. 7), this latest haul comes from those first four years of observing.

The planet bonanza comes courtesy of a new statistical calculation that allows researchers to feel confident that a detection is a real world. Impostors such as companion stars can mimic the signal from a planet. Traditionally, each planet candidate must be followed up with intensive observations from ground-based telescopes. But with over 4,000 candidates in the queue, confirming each one would take a long time. The calculation takes into account the details of how a passing planet should dim and brighten the starlight along with how common impostors should be and provides a reliability score for each candidate. Planets in this study are those whose score is greater than 99 percent.

Techniques such as these should help confirm planets detected by upcoming missions such as the Transiting Exoplanet Survey Satellite, scheduled to launch in late 2017. Some of those planets found by TESS will in turn come under the gaze of the James Webb Space Telescope, which will launch in 2018 and investigate their atmospheres (SN: 4/30/16, p. 32).

Editor’s Note: This story was updated May 17, 2016, to correct the key in the graphic to indicate that previously detected planets include all transiting planets discovered, not just the ones found by Kepler.

Giraffe’s long neck linked to its genetic profile

Giraffes’ genes tell a not-so-tall tale about growing necks to great lengths.

Tweaks to genes important for development may account for both the giraffe’s stature and turbocharged cardiovascular system, researchers report May 17 in Nature Communications.

Researchers compiled the genetic instruction book, or genome, for both the giraffe and the okapi, its short-necked closest living relative. Those two species’ most recent common ancestor lived about 11.5 million years ago, says Douglas Cavener, a geneticist at Penn State University. Overall, giraffes and okapis still have very similar genes, with 19.4 percent that are identical.
The researchers compared giraffe, okapi and cattle genomes to see what sets giraffes and okapis apart from other ungulates. About 400 genes differ between those species and cattle.

Further comparisons of those genes with DNA from other animals revealed 70 genes in which giraffes had DNA differences from all other mammals. Those uniquely tweaked genes could be responsible for giraffes’ unusual height and physiology, the researchers reasoned.

Among the giraffe’s most distinctively altered genes are some that are well known to regulate embryo development. For instance, the team found alterations in several genes that govern skeletal development, including the gene FGFRL1.

FGFRL1 encodes a protein that helps regulate the size of body segments. Giraffes have the same number of vertebrae in their necks as okapi and other animals do, but the bones are bigger. The giraffe version of the FGFRL1 protein contains seven amino acids that are different than those found in other mammals. Those amino acid differences may change the way the protein works and allow giraffes’ body parts to grow larger than those of other animals.

Some of the same genes that gave the giraffe its long neck — FGFRL1 included — may also be involved in strengthening the cardiovascular system in order to pump blood all the way to the giraffe’s lofty brain, the researchers found. Such multifunctional genes would have allowed coordination of giraffes’ adaptations, Cavener says.
The researchers “provide some very compelling candidates” for genes that shaped giraffe evolution, says Michael Hiller, an evolutionary genomicist at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, Germany. More research is needed to show that fiddling with those genes really could turbocharge giraffes’ hearts and supersize their bones. Hiller says he doubts the researchers have found all the genetic secrets to giraffes’ many evolutionary innovations.

Although giraffes have a unique appearance, the statuesque leaf eaters didn’t invent any new genetic tricks to change their hearts and necks, says Cavener. “Giraffes’ novelties almost certainly weren’t created by new genes or pathways, but by modifications of genes and pathways universal to all mammals.”

1.56-billion-year-old fossils add drama to Earth’s ‘boring billion’

A form of multicellular life visible to the naked eye may have emerged nearly a billion years earlier than scientists once thought.

At 1.56 billion years old, fossils discovered in north China represent the best evidence yet for the early existence of large eukaryotes, paleobiologist Maoyan Zhu of the Chinese Academy of Sciences in Nanjing and colleagues report May 17 in Nature Communications.

Eukaryotes, which have cells containing nuclei and other membrane-wrapped machinery, include everything from plants to people. The new find could mark when single-celled eukaryotes became multicellular organisms capable of drawing energy from the sun, says geobiologist Shuhai Xiao of Virginia Tech in Blacksburg, who was not involved in the research. “That’s why it’s important,” he says. “The fossils represent one of the major transitions in evolution.”
Remains of early life on Earth are scarce and sometimes hard to interpret (SN: 2/8/14, p. 16). Some scientists point to evidence of life from as early as 3.8 billion years ago; rocks in Greenland, for example, contain traces of carbon that could be cellular remnants. Harder evidence for microbes comes from what appear to be fossils of actual cells speckling 3.4-billion-year-old sandstone in Australia.

Signs of multicellular life crop up later in the fossil record, roughly 1.2 billion years ago, Zhu says. But until now, clear evidence for large-scale multicellular organisms, like the ones Zhu’s team reports, date back just 635 million years. The team’s new find — consisting of 167 fossils, some up to 30 centimeters long and 8 centimeters wide (roughly the size of a man’s footprint) — places these life-forms much further back in time, when Earth was hot and oxygen was scarce.

The fossils are compressions: cells squashed flat into ribbons — like a garden hose crushed beneath a car’s tire, or like kelp. In fact, the organisms may have looked “very similar to some algae living in the shallow sea today,” Zhu says.

After stretching ropy bodies along the shore, the ancient sea life was preserved in layers of mudstone. Inside the stone, the researchers found closely packed cells and organic carbon, evidence of cellular remains. Zhu can’t explain why such a large time gap exists between his find and similar large-scale fossils, but he suspects the problem may be with preservation of such old material.

Scientists once considered the time period when these organisms lived to be the “boring billion,” though that view seems to be shifting (SN: 11/14/15, p. 18). People thought that “there was very little evolutionary change, and not much going on geochemically,” Xiao says. The new work “tells us a different story.”

Alzheimer’s culprit may fight other diseases

A notorious Alzheimer’s disease villain may also be a germ-busting superhero. Amyloid-beta gums up the brains of people with Alzheimer’s but also takes out dangerous brain invaders, scientists report May 25 in Science Translational Medicine.

As strong as steel, tough strands of A-beta protein imprison pathogens that threaten the body and brain, experiments in mice and worms show. Those results raise the possibility that A-beta plays a role in the immune system and its accumulation in Alzheimer’s might be prompted by an infection.
Earlier studies have shown that A-beta can bust germs in cells in dishes, but the new experiment shows A-beta protection in living mice and worms. Mice engineered to have the human form of A-beta better survived a brain infection of Salmonella bacteria than mice without the human A-beta, Robert Moir and Rudolph Tanzi, both of Harvard Medical School, and colleagues found. And in the bodies of worms, A-beta helped stave off the dangerous yeast Candida.

When researchers injected Salmonella into mice’s hippocampi, a brain area damaged in Alzheimer’s, A-beta quickly sprang into action. It swarmed the bugs and formed aggregates called fibrils and plaques. “Overnight you see the plaques throughout the hippocampus where the bugs were, and then in each single plaque is a single bacterium,” Tanzi says. That rapid response was surprising, he says. “No one expected that.”
And those prisons are probably permanent, Moir says. “In A-beta, those fibrils set like concrete and the bugs have no chance of ever getting out.”

Alzheimer’s has been linked to a host of bacterial, fungal and viral infections, says immunologist Kevan Hartshorn of Boston University School of Medicine. That work, along with the new study, raises the possibility that Alzheimer’s could be spurred by an immune response to a pathogen.

That’s “an extremely provocative and interesting hypothesis,” says neuroscientist Berislav Zlokovic of the University of Southern California in Los Angeles, who says the new data are convincing. But it remains to be seen whether the results are relevant for people with Alzheimer’s. Zlokovic and colleagues recently found that the barrier between brain and blood weakens with age — a situation that could let more microbes into the brain and perhaps spur A-beta accumulation.
A-beta appears to be a general immune system fighter that’s effective against many enemies, says Moir. “This is a classical innate immune response, which means that whatever gets thrown at it, it does the same thing,” he says. “So whether it’s a herpesvirus, a spirochete or chlamydia, it’s going to generate A-beta plaques.”

Moir also raises the possibility that the amyloid’s germ-busting job might play a role in other diseases that come with amyloid accumulation, such as diabetes or heart disease. “I think we may have stumbled across an underlying theme in a lot of major diseases,” he says.

Finding this helpful role for A-beta may complicate a therapeutic approach for Alzheimer’s that attempts to reduce levels of the protein with antibodies, says molecular pharmacologist Marina Ziche of the University of Siena in Italy. “I have always been very skeptical about that approach,” and the new results suggest that people benefit from some A-beta, Ziche says.

The next step is to see whether pathogens are entombed in A-beta plaques in the human brain, Tanzi says. “Now it’s time to start looking for them in patients.” To start, he and colleagues have just begun a project to catalog the collection of microbes in healthy brains and brains with Alzheimer’s.

Finding a strong link between pathogens and Alzheimer’s could suggest new ways to prevent the disease, Tanzi says. Vaccines that fight infections, for instance, might be one way to prevent A-beta pileup.

Comet 67P carries two ingredients for life: glycine, phosphorus

Two more of the ingredients for life as we know it have turned up in space, this time from a comet orbiting the sun. While hints of both have been seen in comets before, this is the clearest evidence to date.

Glycine, the smallest of the 20 amino acids that build proteins, is floating in the tenuous atmosphere of comet 67P/Churyumov-Gerasimenko, researchers report online May 27 in Science Advances. Comet 67P’s atmosphere also holds phosphorus, which is essential to DNA and RNA. Both detections support the idea that comets are at least partly responsible for seeding early Earth with material needed for life.
The phosphorus, glycine and a handful of other organic molecules were detected by the European Space Agency’s Rosetta spacecraft, which has been in orbit around 67P since August 2014 (SN: 9/6/14, p. 8). Kathrin Altwegg, a planetary scientist at the University of Bern in Switzerland, led the study.

Previous searches for glycine in comets Hale-Bopp and C/1996 B2 (Hyakutake) turned up nothing. Glycine was seen in samples from the Stardust mission, which flew through the tail of comet Wild 2 in 2004 and brought comet dust back to Earth, but those measurements were complicated by lab contamination. Scientists have detected hints of phosphorus in comet Halley.

Life’s ingredients keep turning up in cosmic environments. Meteorites carry amino acids and simple sugars have been seen in interstellar clouds(SN: 10/9/04, p. 237). And several of the essential molecules for DNA and RNA, such as ribose, have been created in laboratory experiments that simulate ice grains exposed to ultraviolet radiation from young stars (SN: 4/30/16, p. 18).

Maximum size of giant squid remains a mystery

Giant squid are the stuff of nightmares. They were even one of the deadly dangers in Jules Verne’s 20,000 Leagues Under the Sea, attacking the Nautilus in a group and carrying off one of the crew:

Just as we were crowding each other to reach the platform, two more arms lashed the air, swooped on the seaman stationed in front of Captain Nemo, and carried the fellow away with irresistible violence…. What a scene! Seized by the tentacle and glued to its suckers, the unfortunate man was swinging in the air at the mercy of this enormous appendage. He gasped, he choked, he yelled: ‘Help! Help!’ … The poor fellow was done for.

What makes Verne’s giant squid all the more frightening is that he didn’t invent the creatures; giant squid strandings had been documented in Europe since at least 1639, and scientists informally described the animals in the late 1850s.

But even if we don’t really have to worry about the huge invertebrates snatching people off boats, giant squid remain mysterious. They weren’t even photographed in the wild until 2004. And many questions remain unanswered about them. The biggest: Just how giant can the giants get? A new study has come up with an estimate — and also highlights the many reasons why it’s so difficult to come up with one.

Charles Paxton of the University of St. Andrews in Scotland starts by laying out five ways that it should be possible to estimate squid length, and why the first four aren’t great measures. Anecdotal accounts — which claim giant squid reaching lengths of 30 meters and 53 meters, not counting the two long tentacles — are often riddled with inaccuracy and exaggeration. Estimating maximum length based on squid growth rate won’t work because squid growth rates just aren’t well known. Some scientists have tried to determine lengths based on the sucker scars found on whales, but since scientists don’t know how whale growth affects the sizes of those scars, those aren’t a good measure either.

Direct measurement of dead squid would seem to be a good option, except that the two long tentacles of a squid — which extend far beyond the animal’s arms and determine its full length — are elastic and can change in length when a squid is preserved, Paxton notes. That leaves the fifth method — estimating length based on the size of the hard beak. Beak size and squid body length are related.

Paxton combined the last two methods to come up with a maximum length for a giant squid of about 20 meters, from the top of its mantle, or body, to the tip of its long tentacles. His estimate appears May 17 in the Journal of Zoology.
The longest squid ever reported was 17.37 meters long, and Paxton questions its veracity, as does another paper published last year in PeerJ. Craig McClain of Duke University and colleagues note that the “longest scientifically verified giant squid” measured a mere 12 meters. “What limits the large size of [giant squid] is unclear,” McClain and colleagues write. But metabolic demands may play a role, keeping squid from getting much bigger than what have washed up onto shore (and also keeping them in the cold depths where they’re so difficult for us to find).

But perhaps the focus on the largest and biggest of species is the wrong approach, McClain and his colleagues argue (in, ironically, a paper all about large marine species). The longest, most giant individuals are, after all, just a tiny fraction of a species — and, these researchers write, “these individuals may reach these extraordinary large sizes through developmental or genetic defects and may not represent the healthiest or, in evolutionary terms, the fittest.”

They are, though, among the most mysterious creatures to inhabit our planet.

Desert moss slurps water from its leaves, not roots

From California to China, desert moss (Syntrichia caninervis) braves life in hot deserts and still stays hydrated. What’s its secret? The moss gathers water via a topsy-turvy collection system in its leaves.

Moss leaves have tiny hairlike points at their ends called awns. Previous evidence pointed to a potential role for the awns in water collection and prompted Tadd Truscott of Utah State University and his colleagues to zero in on the structures.

Imaging exposed a system of barbs that line the awns and catch tiny airborne water droplets, the team reports June 6 in Nature Plants. When the air is misty, foggy or the least bit humid, trapped dewdrops move up grooves in the moss leaves by capillary action. The tiny drops form a bigger drop to be absorbed and stored by the plant. When it rains, moss awns reduce splash and capture raindrops by the same mechanism.

Most desert plants, especially cacti, get their water from roots, but moss may not be the only plant that uses unique leaf structures to stock up on water, the team argues.

Second gravitational wave signal detected

For the second time, scientists have glimpsed elusive ripples that vibrate the fabric of space. A new observation of gravitational waves, announced by scientists with the Advanced Laser Interferometer Gravitational-Wave Observatory, LIGO, follows their first detection, reported earlier this year (SN: 3/5/16, p. 6). The second detection further opens a new window through which to observe the universe.

“The era of gravitational wave astronomy is upon us,” says astronomer Scott Ransom of the National Radio Astronomy Observatory in Charlottesville, Va., who is not involved with LIGO. “Now that there’s two, you can’t get around that anymore.”

Both sets of cosmic quivers were wrought in cataclysmic collisions of black holes. But the latest observation indicates that such merging pairs of black holes are a varied bunch — the newly detected black holes were much smaller than the first pair. And this time, scientists concluded that one in the pair was spinning like a top.
“The most important thing is that it’s a second one,” says LIGO spokesperson Gabriela González of Louisiana State University in Baton Rouge. “But it’s important that it’s different, because it shows that there’s a spectrum of black hole systems out there.”

The two black holes in the most recent detection were about eight and 14 times the mass of the sun and were located roughly 1.4 billion light-years from Earth, the scientists estimate. When the pair fused, they formed one bloated black hole with a mass 21 times that of the sun. One sun’s worth of mass was converted into energy and carried away by the gravitational waves, LIGO scientists announced June 15 in San Diego during a meeting of the American Astronomical Society.
“Gravitational astronomy is real,” LIGO laboratory executive director David Reitze said in a news conference. “The future is going to be full of binary black hole mergers for LIGO.”

A paper describing the finding was published online June 15 in Physical Review Letters.

As the two black holes spiraled around each other and slammed together, they churned up cosmic undulations that stretched and squeezed space — as predicted by Einstein’s general theory of relativity. These waves careened across the universe, reaching LIGO’s twin detectors in Hanford, Wash., and Livingston, La., on December 26, 2015.

Each L-shaped LIGO detector senses the minuscule stretching and squeezing of space across its two 4-kilometer arms. As a gravitational wave passes through, one arm lengthens while the other shortens. Laser light bouncing back and forth in the arms serves as an ultrasensitive measuring stick that can pick up those subtle length changes (SN: 3/5/16, p. 22). As the gravitational waves rumbled past Earth in December, they stretched and squeezed the arms by less than a thousandth the width of a proton. “That’s very, very small,” González said. “That’s like changing the distance between Earth and the sun by a fraction of an atomic diameter.” This tiny deviation, appearing in both detectors nearly simultaneously, was enough to pick out the telltale ripples.

Compared with LIGO’s previously detected black hole merger, this one was a more minor dustup. These black holes were less than half the size of those in the first merger (30 and 35 solar masses according to a recently revised estimate). And the signal of their coalescence was more subtle, hiding under the messy wiggles in the data that result from random fluctuations or unwanted signals from the environment.
The first detection stunned scientists, due to the surprisingly large masses of the black holes and the whopping signals their gravitational waves left in the data. But the new black hole merger is more in line with expectations.
“This is comfort food,” says physicist Emanuele Berti of the University of Mississippi in Oxford, who is not involved with LIGO. “If you had asked me before the first detection, I would have bet that this would have been the first kind of binary black hole to be observed, not the monster we saw.”

There’s little question about whether the signal is real — a false alarm of this magnitude should occur only once in 200,000 years. “It’s very, very exciting,” says physicist Clifford Will of the University of Florida in Gainesville. It “looks like a very solid discovery.”

In a new twist, the scientists found that one of the two merging black holes was spinning. It was rotating at a speed at least 20 percent of its maximum possible speed. Using gravitational waves to study how pairs of black holes twirl could help scientists understand how they form.

The scientists used their data to put general relativity through its paces, looking for deviations from the theory’s predictions. But the black holes’ behavior was as expected.

LIGO also saw hints of a third black hole collision on October 12. The evidence was not strong enough to claim a definitive detection, though.

LIGO is currently offline, undergoing improvements that will allow the detectors to peer even further out into space. Scientists expect it to be back up and running this fall, churning out new detections of gravitational waves. “Now we know for sure that we’ll see more in the future,” González says.

In malaria battle, indoor bug spraying has unintended consequence

AUSTIN, TEXAS — Success of an indoor spraying campaign to combat malaria on an African island may have started a worrisome trend in local mosquito evolution.

Since 2004, using pesticides inside homes has eradicated two of four malaria-spreading Anopheles mosquitoes on Bioko Island in Equatorial Guinea, vector biologist Jacob I. Meyers of Texas A&M University in College Station reported June 19 at the Evolution 2016 meeting. Numbers of the remaining two species have dropped. Yet the dregs of these supposedly homebody species are showing a rising tendency to fly outdoors looking for a blood meal, Meyers and colleagues cautioned. The results were also reported April 26 in Malaria Journal.

If the mosquitoes continue to shift toward outside bloodsucking, the campaign could lose some of its bite. Repeated treatments of indoor walls with pesticides that kill mosquitoes clinging to them may not be so effective if the pests venture from home.

What’s changing about these mosquitoes remains to be seen, but this looks like more than simple opportunism, Meyers said. Bed nets are not common, so Meyers doubts that the mosquitoes fly outdoors because no one is available to bite indoors. Nor does their reaction look like escape from repellent pesticides: Outdoor biting didn’t consistently rise after a spraying. The next step is to check for a genetic basis for the shift. Lots of research has explored physiology that lets insects resist pesticides, Meyers said, but the onset of possible resistant behavior has barely been explored.

Ancient Europeans may have been first wine makers

Bottoms up, from the distant past. Thanks to a new method of analyzing the chemicals in liquids absorbed by clay containers, researchers have uncorked the oldest solid evidence of grape-based wine making in Europe, and possibly the world, at a site in northern Greece.

Chemical markers of red wine were embedded in two pieces of a smashed jar and in an intact jug discovered in 2010 in the ruins of a house destroyed by fire around 6,300 years ago at the ancient farming village of Dikili Tash.
After successfully testing the new technique on replicas of clay vessels filled with wine, then emptied, the scientists identified chemical markers of grape juice and fermentation in clay powder scraped off the inner surfaces of the Dikili Tash finds. None of the vessels contained visible stains or residue, researchers report online May 24 in the Journal of Archaeological Science.

Remains of crushed grapes found near the ancient jar shards and jug had already indicated that Dikili Tash farmers made wine or grape juice, say chemist Nicolas Garnier of École Normale Supérieure in Paris and archaeobotanist Soultana Maria Valamoti of Aristotle University of Thessaloniki in Greece.

Previous reports of ancient wine have largely relied on chemical markers of grapes but not the fermentation necessary to turn them into wine, leaving open the possibility that containers held grape juice. The “juice versus wine” conundrum applies to roughly 7,400-year-old jars from Iran (SN: 12/11/04, p. 371), Garnier says.