Here’s how lemon juice may fend off kidney stones
A surprise ingredient may explain how lemon juice puts the squeeze on kidney stones.
Lemons contain nanoparticles that, when fed to rats, block stone formation, scientists report in the Feb. 22 Nano Letters. If the tiny sacs do the same for humans, the nanoparticles might one day offer a way to prevent kidney stones in people, says pharmaceutical scientist Hongzhi Qiao of Nanjing University of Chinese Medicine.
Lemon juice is a well-known home remedy for kidney stones, which form when minerals crystalize and clump up inside the kidney (SN: 9/21/18). These rocky lumps can knock around in the urinary tract, slicing and dicing tissues as they eventually pass out of the body (SN: 10/31/16). “It’s so, so, so painful,” says Jingyin Yan, a nephrologist at Baylor College of Medicine in Houston who was not part of the new study. Patients may feel sharp pain in their back, side or lower abdomen when they pass a stone, she says. “People describe it as worse than delivering a baby.”
Though some medications can help treat kidney stones, many people end up needing surgery to remove them, says Thomas Chi, a urologist at the University of California, San Francisco, also not part of the study. People often imagine kidney stones as tiny pebbles, but sometimes they bulk up like boulders, he adds. “I’ve taken out stones the size of your fist.”
That’s why prevention is key. Scientists already knew that citric acid, which gives lemons their sour power, may do the trick by binding to the minerals that make up stones. But drinking mouth-puckering lemon juice is not so comfortable for patients, Qiao says.
A 2022 clinical trial found that kidney stone patients had trouble downing 120 milliliters — about a half cup — of lemon juice per day. Swilling loads of lemonade can cause dental problems, too. Chi has had patients drink so much that the acidic liquid ate away at their teeth.
So Qiao and colleagues looked for other, more palatable lemon-derived ingredients that might help prevent kidney stones. Inside edible and medicinal plants like ginseng, grapefruit and dandelion, his team has found extracellular vesicle-like nanoparticles, tiny sacs stuffed with molecules including fat, protein and DNA.
These nanoparticles exist in lemon juice, too — and the team fed them to rats that had also ingested a substance that promotes kidney stone growth. The zesty particles slowed stone formation, Qiao and colleagues found. The finding suggests these particles curb development of calcium oxalate crystals, the most common culprit of kidney stones. The particles can also soften the stones and make them less sticky, the team showed.
The new work challenges the conventional wisdom on how lemon juice works to combat kidney stones, Chi says. Using lemon nanoparticles to treat people is still a long way off, but the team’s results hold promise, he says. “The faster you can bring a finding like this towards a human clinical trial, the better.”
‘We Are Electric’ delivers the shocking story of bioelectricty
It took just a 9-volt battery and a little brain zapping to turn science writer Sally Adee into a stone-cold sharpshooter.
She had flown out to California to test an experimental DARPA technology that used electric jolts to speed soldiers’ sniper training. When the juice was flowing, Adee could tell. In a desert simulation that pit her against virtual bad guys, she hit every one.
“Getting my neurons slapped around by an electric field instantly sharpened my ability to focus,” Adee writes in her new book, We Are Electric. That brain-stimulating experience ignited her 10-year quest to understand how electricity and biology intertwine. And she’s not just talking neurons.
Bioelectricity, Adee makes the case, is a shockingly underexplored area of science that spans all parts of the body. Its story is one of missed opportunity, scientific threads exposed and abandoned, tantalizing clues and claims, “electroquacks” and unproven medical devices — and frogs. Oh so many frogs.
Adee takes us back to the 18th century lab of Luigi Galvani, an Italian scientist hunting for what gives animals the spark of life. His gruesome experiments on twitching frog legs offered proof that animal bodies generate their own electricity, an idea that was hotly debated at the time. (So many scientists repeated Galvani’s experiments, in fact, that Europe began to run out of frogs.)
But around the same time, Galvani critic Alessandro Volta, another Italian scientist, invented the electric battery. It was the kind of razzle-dazzle, history-shaking device that stole the spotlight from animal electricity, and the fledgling field fizzled. “The idea had been set,” Adee writes. “Electricity was not for biology. It was for machines, and telegraphs, and chemical reactions.”
It took decades for scientists to pick up Galvani’s experimental threads and get the study of bioelectricity back on track. Since then, we’ve learned just how much electricity orchestrates our lives, and how much more remains to be discovered. Electricity zips through our neurons, makes our hearts tick and flows in every cell of the body. We’re made up of 40 trillion tiny rechargeable batteries, Adee writes.
She describes how cells use ion channels to usher charged molecules in and out. One thing readers might not expect from a book that illustrates the intricacies of ion channels: It’s surprisingly funny.
Chloride ions, for example, are “perpetually low-key ashamed” because they carry a measly -1 charge. Bogus medical contraptions (here’s looking at you, electric penis belts) were “electro-foolery.” In her acknowledgements, Adee jokes about the “life-saving powers of Voltron” and thanks people for enduring her caffeine jitters. That energy thrums through the book, charging her storytelling like a staticky balloon.
Adee is especially electrifying in a chapter about spinal nerve regeneration and why initial experiments juddered to a halt. Decades ago, scientists tried coaxing severed nerves to link up again by applying an electric field. The controversial technique sparked scientific drama, but the idea of using electricity to heal may have been ahead of its time. Fast-forward to 2020, and DARPA has awarded $16 million to researchers with a similar concept: a bioelectric bandage that speeds wound healing.
Along with zingy Band-Aids of the future, Adee describes other sci-fi–sounding devices in the works. One day, for example, surgeons may sprinkle your brain with neurograins, neural lace or neural dust, tiny electronic implants that could help scientists monitor brain activity or even help people control robotic arms or other devices (SN: 9/3/16, p. 10).
Such implants bring many challenges — like how to marry electronics to living tissue — but Adee’s book leaves readers with a sense of excitement. Not only could bioelectricity inspire new and improved medical devices, it could also reveal a current of unexpected truths about the body.
As Adee writes: “We are electrical machines whose full dimensions we have not even yet dreamed of.”
Nepal quake’s biggest shakes relatively spread out
The April 25 Nepal earthquake killed more than 8,000 people and caused several billion dollars in damage, but new research suggests the toll could have been a lot worse.
GPS readings taken during the quake indicate that most of the tremors vibrated through the ground as long shakes rather than quick pulses. That largely spared the low-lying buildings that make up much of Nepal’s capital, Kathmandu, geophysicists report online August 6 in Science. Those same low-frequency rumbles, though, toppled Kathmandu’s handful of larger buildings, such as the historic 62-meter tall Dharahara Tower.
Understanding why the fault produced a quake at such low frequencies could help seismologists better identify future seismic hazards, says Jean-Philippe Avouac of the University of Cambridge. “This could be some good news not only for this major fault, but also potentially for similar faults around the world.”
Nepal sits over a tectonic boundary where the Indian Plate slips under the Eurasian Plate. At places, the two plates snag together, building stress that abruptly releases as an earthquake (SN: 5/16/15, p. 12).
Earthquakes stronger than April’s magnitude 7.8 shakedown have hit Nepal before, including a magnitude 8.0 quake in 1934. Despite the recent quake’s feebler intensity, its trembles somehow destroyed large buildings that had previously endured mightier earthquakes.
Avouac and colleagues monitored April’s quake using a network of 35 solar-powered GPS stations, the first time such an accurate system was in place during a major quake on this type of fault. The stations measured ground movements five times each second. The earthquake shook most intensely at 0.25 hertz, or one full wave every four seconds, with only moderate shaking above 1 hertz, or one or more complete waves each second.
A building is most vulnerable when shook near its resonance frequency, a range where even small outside forces can result in big vibrations in the structure. Because taller structures have lower resonance frequencies, the April quake’s low-frequency rumbles caused larger buildings to sway and crumble while largely sparing smaller dwellings, the researchers found.
The low frequencies resulted from the smooth and relatively long duration of the tectonic slipping that initiated the quake, the researchers propose. The low-frequency waves then echoed across the region and produced protracted violent shaking.
Determining where future low-frequency quakes will strike could save lives by identifying which building types are most vulnerable to collapse, says geologist Kristin Morell of the University of Victoria in Canada. “These are things that should be built into building codes.”
Ancestral humans had more DNA
A new atlas of human genetic diversity reveals what human ancestors’ DNA may have looked like before people migrated out of Africa.
Ancestral humans carried 40.7 million more DNA base pairs than people do today, researchers report online August 6 in Science. That’s enough DNA to build a small chromosome, says study coauthor Evan Eichler, an evolutionary geneticist at the University of Washington in Seattle.
Human ancestors in Africa jettisoned 15.8 million of those DNA base pairs — information-carrying building blocks of DNA often referred to by the letters A, T, G and C — before dispersing around the globe, the researchers discovered. As people left Africa and spread to other continents, they dropped more chunks of DNA. Eichler and colleagues have followed these genetic bread crumbs to map relationships among 125 human groups worldwide.
People didn’t just lose DNA. They also gained some. Compared with chimpanzees and orangutans, people have 728 extra pieces of DNA created when portions of the human genetic instruction book, the genome, were copied. Everyone has at least three copies of those duplicated bits, although the exact number varies from person to person.
Previous maps of human genetic diversity have usually not marked the yawning chasms left by deletions or the new territory created by duplications. Most diversity maps have focused on single DNA base pair changes, often called single nucleotide polymorphisms, or SNPs. But all the SNPs together comprise only 1.1 percent of the genome. Duplications and deletions, collectively known as copy number variants, have shaped more than 7 percent of the human genome.
Story continues below infographic
Because duplications and deletions involve larger swaths of DNA than SNPs do, their influence on human evolution may also be bigger. Both duplications and deletions have been implicated in shaping human characteristics, such as bigger brains (SN: 3/21/15, p. 16; SN: 4/9/11, p. 15).
But researchers “can’t answer the question yet of whether what makes us human is in what was lost or what was duplicated,” says David Liberles, a computational evolutionary biologist at Temple University in Philadelphia.
Eichler’s choice is clear. “Duplications rock,” he says. “They affect more base pairs in the human genome than any other type of variation.” Duplications span 4.4 percent of the genome, while deletions represent 2.77 percent. And duplications tend to involve genes, while deletions often fall in spaces between genes, the researchers found.
His team flagged many duplications as possible medical and evolutionary points of interest. For instance, some groups of people have up to six copies of CLPS genes, which encode pancreatic enzymes that may help reduce blood sugar levels. Some African groups carry duplications of genes that may protect against sleeping sickness caused by trypanosome parasites.
Another attraction is a very large duplication of about 225,000 base pairs that Papua New Guineans inherited from Denisovans, an extinct group of hominids related to Neandertals. The colossal hunk of DNA contains two microRNA genes. MicroRNAs are small molecules that help regulate protein production. Eichler and colleagues calculate that the original duplication happened about 440,000 years ago in Denisovans. It was passed to Papuans and some other Melanesians about 40,000 years ago when their ancestors interbred with Denisovans. Now, about 80 percent of Papuans carry the duplication. Eichler speculates that the duplication may have given Papuan ancestors some evolutionary advantage, although what that advantage might be isn’t known.
While the researchers make a compelling case that duplications and deletions may play an important role in evolution, the team has provided little evidence that copy number variants really determine trait differences between groups, says Edward Hollox, a human geneticist at the University of Leicester in England. “It’s almost a paper saying, ‘Look, isn’t this interesting?’ But why it’s interesting they haven’t quite gotten to the bottom of.” Still, Hollox says the map will point other researchers to parts of the genome where evolution may have left its mark.
3-D maps of a protein show how it helps organs filter out toxic substances
A close look at one protein shows how it moves molecular passengers into cells in the kidneys, brain and elsewhere.
The protein LRP2 is part of a delivery service, catching certain molecules outside a cell and ferrying them in. Now, 3-D maps of LRP2 reveal the protein’s structure and how it captures and releases molecules, researchers report February 6 in Cell. The protein adopts a more open shape, like a net, at the near-neutral pH outside cells. But in the acidic environment inside cells, the protein crumples to drop off any passengers.
The shape of LRP2’s structure — and how it enables so many functions — has stumped scientists for decades. The protein helps the kidneys and brain filter out toxic substances, and it operates in other places too, like the lungs and inner ears. When the protein doesn’t function properly, a host of health conditions can occur, including chronic kidney disease and Donnai-Barrow syndrome, a genetic disorder that affects the kidneys and brain.
The various conditions associated with LRP2 dysfunction come from the protein’s numerous responsibilities — it binds to more than 75 different molecules. That’s a huge amount for one protein, earning it the nickname “molecular flypaper,” says nephrologist Jonathan Barasch of Columbia University.
Typically, LRP2 sits at a cell membrane’s surface, waiting to snag a molecule passing by. After the protein binds to a molecule, the cell engulfs the part of its surface containing the protein, forming an internal bubble called an endosome. LRP2 then releases the molecule inside the cell, and the endosome carries the protein back to the surface.
To understand this shuttle system, Barasch and colleagues collected LRP2 from 500 mouse kidneys. The researchers put some of the protein in a solution at the extracellular pH of 7.5, and some in an endosome-mimicking solution at pH 5.2. Using a cryo-electron microscope, they captured images of the proteins and then stitched the images together in a computer, rendering 3-D maps of the protein at both open and closed formations.
The researchers suggest that charged calcium atoms hold the protein open at extracellular pH. But as pH drops due to hydrogen ions flowing into the endosome, the hydrogen ions displace the calcium ions, causing the protein to contract.
A chemical imbalance doesn’t explain depression. So what does?
You’d be forgiven for thinking that depression has a simple explanation.
The same mantra — that the mood disorder comes from a chemical imbalance in the brain — is repeated in doctors’ offices, medical textbooks and pharmaceutical advertisements. Those ads tell us that depression can be eased by tweaking the chemicals that are off-kilter in the brain. The only problem — and it’s a big one — is that this explanation isn’t true.
The phrase “chemical imbalance” is too vague to be true or false; it doesn’t mean much of anything when it comes to the brain and all its complexity. Serotonin, the chemical messenger often tied to depression, is not the one key thing that explains depression. The same goes for other brain chemicals.
The hard truth is that despite decades of sophisticated research, we still don’t understand what depression is. There are no clear descriptions of it, and no obvious signs of it in the brain or blood.
The reasons we’re in this position are as complex as the disease itself. Commonly used measures of depression, created decades ago, neglect some important symptoms and overemphasize others, particularly among certain groups of people. Even if depression could be measured perfectly, the disorder exists amid myriad levels of complexity, from biological confluences of minuscule molecules in the brain all the way out to the influences of the world at large. Countless combinations of genetics, personality, history and life circumstances may all conspire to create the disorder in any one person. No wonder the science is stuck.
It’s easy to see why a simple “chemical imbalance” explanation holds appeal, even if it’s false, says Awais Aftab, a psychiatrist at Case Western Reserve University in Cleveland. What causes depression is nuanced, he says — “not something that can easily be captured in a slogan or buzzword.”
So here, up front, is your fair warning: There will be no satisfying wrap-up at the end of this story. You will not come away with a scientific explanation for depression, because one does not exist. But there is a way forward for depression researchers, Aftab says. It requires grappling with nuances, complexity and imperfect data.
Those hard examinations are under way. “There’s been some really interesting and exciting scientific and philosophical work,” Aftab says. That forward motion, however slow, gives him hope and may ultimately benefit the millions of people around the world weighed down by depression.
How is depression measured?
Many people who feel depressed go into a doctor’s office and get assessed with a checklist. “Yes” to trouble sleeping, “yes” to weight loss and “yes” to a depressed mood would all yield points that get tallied into a cumulative score. A high enough score may get someone a diagnosis. The process seems straightforward. But it’s not. “Even basic issues regarding measurement of depression are actually still quite open for debate,” Aftab says.
That’s why there are dozens of methods to assess depression, including the standard description set by the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders, or DSM-5. This manual is meant to standardize categories of illness.
Variety in measurement is a real problem for the field and points to the lack of understanding of the disease itself, says Eiko Fried, a clinical psychologist at Leiden University in the Netherlands. Current ways of measuring depression “leave you with a really impoverished, tiny look,” Fried says.
Scales can miss important symptoms, leaving people out. “Mental pain,” for instance, was described by patients with depression and their caregivers as an important feature of the illness, researchers reported in 2020 in Lancet Psychiatry. Yet the term doesn’t show up on standard depression measurements.
One reason for the trouble is that the experience of depression is, by its nature, deeply personal, says clinical psychologist Ioana Alina Cristea of the University of Pavia in Italy. Individual patient complaints are often the best tool for diagnosing the disorder, she says. “We can never let these elements of subjectivity go.”
In the middle of the 20th century, depression was diagnosed through subjective conversation and psychoanalysis, and considered by some to be an illness of the soul. In 1960, psychiatrist Max Hamilton attempted to course-correct toward objectivity. Working at the University of Leeds in England, he published a depression scale. Today, that scale, known by its acronyms HAM-D or HRSD, is one of the most widely used depression screening tools, often used in studies measuring depression and evaluating the promise of possible treatments.
“It’s a great scheme for a scale that was made in 1960,” Fried says. Since the HRSD was published, “we have put a man on the moon, invented the internet and created powerful computers small enough to fit in people’s pockets,” Fried and his colleagues wrote in April in Nature Reviews Psychology. Yet this 60-year-old tool remains a gold standard.
Hamilton developed his scale by observing patients who had already been diagnosed with depression. They exhibited symptoms such as weight loss and slowed speech. But those mixtures of symptoms don’t apply to everyone with depression, nor do they capture nuance in symptoms.
To spot these nuances, Fried looked at 52 depression symptoms across seven different scales for depression, including Hamilton’s scale. On average, each symptom appeared in three of the seven scales. A whopping 40 percent of the symptoms appeared in only one scale, Fried reported in 2017 in the Journal of Affective Disorders. The only specific symptom common to all seven scales? “Sad mood.”
In a study that examined depression symptoms reported by 3,703 people, Fried and Randolph Nesse, an evolutionary psychiatrist at the University of Michigan Medical School in Ann Arbor, found 1,030 unique symptom profiles. Roughly 14 percent of participants had combinations of symptoms that were not shared with anyone else, the researchers reported in 2015 in the Journal of Affective Disorders.
Before reliable thermometers, the concept of temperature was murky. How do you understand the science of hot and cold without the tools to measure it? “You don’t,” Fried says. “You make a terrible measurement, and you have a terrible theory of what it is.” Depression presents a similar challenge, he says. Without good measurements, how can you possibly diagnose depression, determine whether symptoms get better with treatments or even prevent it in the first place?
Depression differs by gender, race and culture
The story gets murkier when considering who these depression scales were made for. Symptoms differ among groups of people, making the diagnosis even less relevant for certain groups.
Behavioral researcher Leslie Adams of Johns Hopkins Bloomberg School of Public Health studies depression in Black men. “It’s clear that [depression] is negatively impacting their work lives, social lives and relationships. But they’re not being diagnosed at the same rate” as other groups, she says. For instance, white people have a lifetime risk of major depression disorder of almost 18 percent; Black people’s lifetime risk is 10.4 percent, researchers reported in 2007 in JAMA Psychiatry. This discrepancy led Adams to ask: “Could there be a problem with diagnostic tools?”
Turns out, there is. Black men with depression have several characteristics that common scales miss, such as feelings of internal conflict, not communicating with others and feeling the burdens of societal pressure, Adams and colleagues reported in 2021 in BMC Public Health. A lot of depression measurements are based on questions that don’t capture these symptoms, Adams says. “ ‘Are you very sad?’ ‘Are you crying?’ Some people do not emote in the same way,” she says. “You may be missing things.”
American Indian women living in the Southeast United States also experience symptoms that aren’t adequately caught by the scales, Adams and her team found in a separate study. These women also reported experiences that do not necessarily signal depression for them but generally do for wider populations.
On common scales, “there are some items that really do not capture the experience of depression for these groups,” Adams says. For instance, a common question asks how well someone agrees with the sentence: “I felt everything I did was an effort.” That “can mean a lot of things, and it’s not necessarily tied to depression,” Adams says. The same goes for items such as, “People dislike me.” A person of color faced with racism and marginalization might agree with that, regardless of depression, she says.
Our ways to measure depression capture only a tiny slice of the big picture. The same can be said about our understanding of what’s happening in the brain.
The flawed serotonin hypothesis
Serotonin came into the spotlight in part because of the serendipitous discovery of drugs that affected serotonin receptors, called selective serotonin reuptake inhibitors, or SSRIs. After getting its start in the late 1960s, the “serotonin hypothesis” flourished in the late ’90s, as advertisers ran commercials that told viewers that SSRIs fixed the serotonin deficit that can accompany depression. These messages changed the way people talked and thought about depression. Having a simple biological explanation helped some people and their doctors, in part by easing the shame some people felt for not being able to snap out of it on their own. It gave doctors ways to talk with people about the mood disorder.
But it was a simplified picture. A recent review of evidence, published in July in Molecular Psychiatry, finds no consistent data supporting the idea that low serotonin causes depression. Some headlines declared that the study was a grand takedown of the serotonin hypothesis. To depression researchers, the findings weren’t a surprise. Many had already realized this simple description wasn’t helpful.
There’s plenty of data suggesting that serotonin, and other chemical messengers such as dopamine and norepinephrine, are somehow involved in depression, including a study by neuropharmacologist Gitte Moos Knudsen of the University of Copenhagen. She and colleagues recently found that 17 people who were in the midst of a depressive episode released, on average, less serotonin in certain brain areas than 20 people who weren’t depressed. The study is small, but it’s one of the first to look at serotonin release in living human brains of people with depression.
But Knudsen cautions that those results, published in October in Biological Psychiatry, don’t mean that depression is fully caused by low serotonin levels. “It’s easy to defer to simple explanations,” she says.
SSRIs essentially form a molecular blockade, stopping serotonin from being reabsorbed into nerve cells and keeping the levels high between the cells. Those high levels are thought to influence nerve cell activity in ways that help people feel better.
Because the drugs can ease symptoms in about half of people with depression, it seemed to make sense that depression was caused by problems with serotonin. But just because a treatment works by doing something doesn’t mean the disease works in the opposite way. That’s backward logic, psychiatrist Nassir Ghaemi of Tufts University School of Medicine in Boston wrote in October in a Psychology Today essay. Aspirin can ease a headache, but a headache isn’t caused by low aspirin.
“We think we have a much more nuanced picture of what depression is today,” Knudsen says. The trouble is figuring out the many details. “We need to be honest with patients, to say that we don’t know everything about this,” she says.
The brain contains seven distinct classes of receptors that sense serotonin. That’s not even accounting for sensors for other messengers such as dopamine and norepinephrine. And these receptors sit on a wide variety of nerve cells, some that send signals when they sense serotonin, some that dampen signals. And serotonin, dopamine and norepinephrine are just a few of dozens of chemicals that carry information throughout a multitude of interconnected brain circuits. This complexity is so great that it renders the phrase “chemical imbalance” meaningless.
Overly simple claims — low serotonin causes depression, or low serotonin isn’t involved — serve only to keep us stymied, Aftab says. “[It] just keeps up that unhelpful binary.”
Depression research can’t ignore the world
In the 1990s, Aftab says, depression researchers got intensely focused on the brain. “They were trying to find the broken part of the brain that causes depression.” That limited view “really hurt depression research,” Aftab says. In the last 10 years or so, “there’s a general recognition that that sort of mind-set is not going to give us the answers.”
Reducing depression to specific problems of biology in the brain didn’t work, Cristea says. “If you were a doctor 10 years ago, the dream was that the neuroscience would give us the markers. We would look at the markers and say, ‘OK. You [get] this drug. You, this kind of therapy.’ But it hasn’t happened.” Part of that, she says, is because depression is an “existentially complicated disorder” that’s tough to simplify, quantify and study in a lab.
Our friendships, our loves, our setbacks and our stress can all influence our health. Take a recent study of first-year doctors in the United States. The more these doctors worked, the higher the rate of depression, scientists reported in October in the New England Journal of Medicine. Similar trends exist for caregivers of people with dementia and health care workers who kept emergency departments open during the COVID-19 pandemic. Their high-stress experiences may have prompted depression in some way.
“Depression is linked to the state of the world — and there is no denying it,” Aftab says.
Today’s research on depression ought to be more pluralistic, Adams says. “There are so many factors at play that we can’t just rest on one solution,” she says. Research from neuroscience and genetics has helped identify brain circuits, chemical messengers, cell types, molecules and genes that all may be involved in the disorder. But researchers aren’t satisfied with that. “There is other evidence that remains unexplored,” Adams says. “With our neuroscience advances, there should be similar advances in public health and psychiatric work.”
That’s happening. For her part, Adams and colleagues have just begun a study looking at moment-to-moment stressors in the lives of Black adolescents, ages 12 to 18, as measured by cell phone questionnaires. Responses, she hopes, will yield clues about depression and risk of suicide.
Other researchers are trying to fit together all of these different ways of seeing the problem. Fried, for example, is developing new concepts of depression that acknowledge the interacting systems. You tug on one aspect of it — using an antidepressant for instance, or changing sleep patterns — and see how the rest of the system reacts.
Approaches like these recognize the complexity of the problem and aim to figure out ways to handle it. We will never have a simple explanation for depression; we are now learning that one cannot possibly exist. That may sound like cold comfort to people in depression’s grip. But seeing the challenge with clear eyes may be the thing that moves us forward.
What to know about Turkey’s recent devastating earthquake
In the early morning of February 6, a devastating magnitude 7.8 earthquake struck southern Turkey, near the border with Syria. Numerous aftershocks followed, the strongest nearly rivaling the power of the main quake, at magnitude 7.5. By evening, the death toll had climbed to more than 3,700 across both countries, according to Reuters, and was expected to continue to rise.
Most of Turkey sits on a small tectonic plate that is sandwiched between two slowly colliding behemoths: the vast Eurasian Plate to the north and the Arabian Plate to the south. As those two plates push together, Turkey is being squeezed out sideways, like a watermelon seed snapped between two fingers, says seismologist Susan Hough of the U.S. Geological Survey.
The entire country is hemmed in by strike-slip, or sideways-sliding, fault zones: the North Anatolian Fault that runs roughly parallel to the Black Sea, and the East Anatolian Fault, near the border with Syria. As a result, Turkey is highly seismically active. Even so, Monday’s quake, which occurred on the East Anatolian Fault, was the strongest to strike the region since 1939, when a magnitude 7.8 quake killed 30,000 people.
Science News talked with Hough, who is based in Pasadena, Calif., about the quake, its aftershocks and building codes. The conversation has been edited for length and clarity.
SN: You say on Twitter that this was a powerful quake for a strike-slip fault. Can you explain?
Hough: The world has seen bigger earthquakes. Subduction zones generate the biggest earthquakes, as much as magnitude 9 (SN: 1/13/21). But quakes close to magnitude 8 are not common on strike-slip faults. But because they’re on land and tend to be shallow, you can get severe … shaking close to the fault that’s moving.
SN: Some of the aftershocks were very strong, at magnitudes 7.5 and 6.7. Is that unusual?
Hough: As with a lot of things, there’s what’s expected on average, and there’s what’s possible. On average, the largest aftershocks are a full unit smaller than the main shock. But that’s just average; for any individual main shock, the largest aftershock can have a lot of variability.
The other thing people noted was the distance [between the main shock and some aftershocks over a hundred kilometers away]. Aftershock as a term isn’t precise. What is an aftershock isn’t something that seismologists are always clear on. The fault that produced the main shock is 200 kilometers long, and that’s going to change the stress in a lot of areas. Mostly it releases stress, but it does increase stress in some areas. So you can get aftershocks along that fault, but also some distance away. It’s a little bit unusual, but not unheard of.
SN: People have wondered whether Monday’s magnitude 3 earthquake near Buffalo, N.Y., might be related.
Hough: A magnitude 7.8 quake generates [seismic] waves that you can record all around Earth, so it’s technically disrupting every point on Earth. So it’s not a completely outlandish idea, but it’s statistically exceedingly unlikely. Maybe if a seismic wave passed through a fault that was just ready to go in just the right way, it’s possible.
An interesting [and completely separate] idea is that you might get earthquakes around the perimeter of the Great Lakes [such as near Buffalo] because as the lake levels go up and down, you’re stressing the Earth’s crust, putting weight on one side or the other. That’s a source of stress that could give you these pretty small quakes.
SN: The images emerging from this deadly disaster are devastating.
Hough: It’s hard to watch. And it hammers home the importance of building codes. One of the problems that any place is up against is that building codes improve over time, and you’ve always got the problem of older structures. It’s really expensive to retrofit. I expect that earthquake engineers will be looking at the damage, and it will illuminate where the vulnerabilities are [in the area]. The hope is that with proper engineering, we can make the built environment safe.
Mammals that live in groups may live longer, longevity research suggests
For mammals, one secret to a long life may be spending it living with friends and family.
An analysis of the life spans and social lives of nearly 1,000 mammal species shows that species that live in groups, such as horses and chimpanzees, tend to live longer than solitary beasts, like weasels and hedgehogs. The finding suggests that life span and social traits are evolutionarily entwined in mammals, researchers report January 31 in Nature Communications.
The maximum life span of mammals ranges widely. The shortest-lived shrews, for example, survive about two years, while bowhead whales (Balaena mysticetus) can reach roughly 200 years of age (SN: 1/6/15).
When evolutionary biologist Xuming Zhou of the Chinese Academy of Sciences in Beijing was studying the longest-lived mammals to understand the evolution of longevity, he took particular note of naked mole-rats (Heterocephalus glaber). The rodents are exceptionally long-lived, sometimes reaching over 30 years of age. They also live in huge, complex, subterranean societies. In contrast, other rodents like golden hamsters (Mesocricetus auratus), which are solitary, live to only about four years.
Some previous research on specific mammal species showed an effect of social behavior on longevity, Zhou says. For instance, female chacma baboons (Papio ursinus) with strong, stable social bonds live longer than females without them.
Zhou and his colleagues decided to see if there were any links between longevity and social habits shared across a wide range of mammal species.
The researchers compiled information from the scientific literature on the social organization of 974 mammal species. They then split these species into three categories: solitary, pair-living and group-living. When the researchers compared these three groups with data on the mammals’ known longevity, they found that group-living mammals tended to live longer than the solitary species — roughly 22 years compared with nearly 12 years in solitary mammals.
Zhou and his colleagues then accounted for body mass — bigger mammals tend to live longer than smaller ones — and the effect of social bonds held. A stark example comes from shrews and bats. Both are similarly tiny mammals, but the loner shrews live only a few years, while some far more social bat species can live for 30 or 40 years.
“We were so surprised, because individuals who live in groups also face a lot of costs, such as competition for potential mating partners and food,” Zhou says. Frequent social contact in group settings can also encourage the spread of infectious disease.
But there are benefits to living in a group too, he says, such as banding together for protection against predators. Living together may also reduce the risk of starvation if, for instance, group members increase foraging efficiency by finding and gathering food together. These factors may allow social mammals to live longer.
The evolution of a long life may also be more likely in group-living species: Living in a group allows animals to potentially aid the survival of their family members, which carry their genes.
Evolutionary biologist Laurent Keller of the University of Lausanne in Switzerland lauds the study for the sheer size of the sampling effort. “But it would have been useful to be a bit more precise about different levels of sociality.” There are more variations of social organization within the three categories used in the study, he says, and the relative degree of sociality could influence any patterns you see.
Still, fine tuning the social categories “is not an easy task,” Keller notes.
To get an idea of how genes might produce the link between longevity and group living, Zhou and his team took brain tissue samples from 94 mammal species and analyzed the transcriptome — the full complement of RNA — giving insights into different genes’ activity levels. This can reveal whether genes are turned on or off, or how much protein the genes may be instructing cells to produce.
The researchers found 31 genes whose relative activity levels were correlated with both longevity and one of the three prescribed social categories. Many of these genes appear to have roles in the immune system, which may have importance when countering pathogens spreading through the social group. Other genes were associated with hormone regulation, including some thought to influence social behaviors.
In studying these genes in more detail, Zhou envisions uncovering more about how mammals’ social habits and life spans have evolved together.
The biblical warrior Goliath may not have been so giant after all
Early versions of the Bible describe Goliath — an ancient Philistine warrior best known as the loser of a fight with the future King David — as a giant whose height in ancient terms reached four cubits and a span. But don’t take that measurement literally, new research suggests.
Archaeological findings at biblical-era sites including Goliath’s home city, a prominent Philistine settlement called Gath, indicate that those ancient measurements work out to 2.38 meters, or 7 feet, 10 inches. That’s equal to the width of walls forming a gateway into Gath that were unearthed in 2019, according to archaeologist Jeffrey Chadwick of Brigham Young University in Provo, Utah.
Rather than standing taller than any NBA player ever, Goliath was probably described metaphorically by an Old Testament writer as a warrior who matched the size and strength of Gath’s defensive barrier, Chadwick said November 19 at the virtual annual meeting of the American Schools of Oriental Research.
People known as Canaanites first occupied Gath in the early Bronze Age, roughly 4,700 to 4,500 years ago. The city was rebuilt more than a millennium later by the Philistines, known from the Old Testament as enemies of the Israelites (SN: 11/22/16). Gath reached its peak during the Iron Age around 3,000 years ago, the time of biblical references to Goliath. Scholars continue to debate whether David and Goliath were real people who met in battle around that time.
The remains of Gath are found at a site called Tell es-Safi in Israel. A team led by archaeologist Aren Maeir of Bar-Ilan University in Ramat-Gan, Israel — who Chadwick collaborated with to excavate the Gath gateway — has investigated Tell es-Safi since 1996. Other discoveries at Gath include a pottery fragment inscribed with two names possibly related to the name Goliath. Evidence of Gath’s destruction about 2,850 years ago by an invading army has also been recovered.
Archaeologists have long known that in ancient Egypt a cubit corresponded to 52.5 centimeters and assumed that the same measure was used at Gath and elsewhere in and around ancient Israel. But careful evaluations of many excavated structures over the last several years have revealed that standard measures differed slightly between the two regions, Chadwick said.
Buildings at Gath and several dozen other cities from ancient Israel and nearby kingdoms of Judah and Philistia, excavated by other teams, were constructed based on three primary measurements, Chadwick has found. Those include a 54-centimeter cubit (versus the 52.5-centimeter Egyptian cubit), a 38-centimeter short cubit and a 22-centimeter span that corresponds to the distance across an adult’s outstretched hand.
Dimensions of masonry at these sites display various combinations of the three measurements, Chadwick said. At a settlement called et-Tell in northern Israel, for instance, two pillars at the front of the city gate are each 2.7 meters wide, or five 54-centimeter cubits. Each of four inner pillars at the city gate measure 2.38 meters wide, or four 54-centimeter cubits and a 22-centimeter span. Excavators of et-Tell regard it as the site of a biblical city called Bethsaida.
Chadwick’s 2019 excavations found one of presumably several gateways that allowed access to Gath through the city’s defensive walls. Like the inner pillars of et-Tell’s city gate, Gath’s gate walls measured 2.38 meters wide, or four cubits and a span, the same as Goliath’s biblical stature.
“The ancient writer used a real architectural metric from that time to describe Goliath’s height, likely to indicate that he was as big and strong as his city’s walls,” Chadwick said.
Although the research raises the possibility that Goliath’s recorded size referred to the width of a city wall, Chadwick “will need to do more research to move this beyond an intriguing idea,” says archaeologist and Old Testament scholar Gary Arbino of Gateway Seminary in Mill Valley, Calif. For one thing, Arbino suggests, it needs to be established that the measure applied to Goliath, four cubits and a span, was commonly used at the time as a phrase that figuratively meant “big and strong.”