Polluted water: It’s where sea snakes wear black

Maybe it’s more than reptile fashion. The high percentage of citified sea snakes wearing black might be a sign that pollution is an evolutionary force.

Off the coasts of Australia and New Caledonia, some turtle-headed sea snakes (Emydocephalus annulatus) sport pale bands on their dark skins. Others go all black. In 15 places surveyed, the all-black form was more likely to predominate in waters near cities, military sites or industrial zones than along reefs near less built-up coastlines, says evolutionary ecologist Rick Shine of the University of Sydney.
That trend plus some analysis of trace elements in snakes’ skin suggests that the abundant dark forms could turn out to be an example of industrial melanism, Shine and his colleagues propose August 10 in Current Biology.

The most famous example of this evolutionary phenomenon comes from a dark form of peppered moth that overtook pale populations in 19th century England (SN: 6/25/16, p. 6). Dark wings created better camouflage from hungry birds in the grimy industrializing landscape.
Shine doesn’t think the sea snakes are going for camouflage, though. Instead, the snakes could be more like the dark-feathered pigeons of Paris. The melanin that gives that city’s feral birds their urban chic also does a great job of binding traces of toxic metals such as zinc, explains evolutionary ecologist Marion Chatelain of the University of Warsaw. When birds molt, getting rid of darker feathers lets them unload more of the unhealthful urban pollutants, she and colleagues have reported.
This could explain why marine biologist and study coauthor Claire Goiran has so many dark turtle-headed sea snakes in a lagoon not far from her campus, the University of New Caledonia in Nouméa. Earlier studies had found only downsides to dark coloration: Seaweed spores preferentially settle on dark snakes and sprout fuzz that can cut swimming speed by 20 percent and cause a snake to shed its skin more often than normal.
To test a scenario of industrial melanism, or darkening due to pollution, the researchers collected data on skin colors for a total of about 1,450 snakes, both live and museum specimens, from 15 sites in New Caledonia and Australia. Higher percentages of all-dark snakes wriggled around the nine polluted sites surveyed. At one, a remote Australian reef that the military had long used as a bombing range, all 13 specimens were dark.

To test shed skins for trace metals, Goiran and Shine enlisted Paco Bustamante of the University of La Rochelle in France, who studies trace metal contamination in marine life.

Researchers managed to collect sloughed skins from 17 turtle-headed snakes, which inconveniently shed their skin underwater. To compare light and dark patches, the scientists turned to two local species of sea kraits, which have banded skin and visit land to shed it.
Overall, skins held concentrations of trace elements higher than those that can cause health problems in birds and mammals, the researchers report. In the krait skins, dark zones had slightly more of some contaminants, such as zinc and arsenic, than the pale bluish-white bands did.

The idea that polluted water favors melanized sea snakes “is a reasonable hypothesis based on what we know,” Chatelain says. Definitive tests will require more data and different approaches. Genetic testing, for example, would clarify whether dark populations arose instead from small groups of pioneers that happened to have a lot of black snakes.

That testing could be a long way off. Sea snakes are evolutionary cousins of cobras and mambas, and some of the species swimming around Australia and New Caledonia are “bowel-looseningly large,” Shine says. At least the little turtle-headed ones, which eat eggs of small reef fishes, have venom glands that have atrophied and “probably couldn’t fit a human finger in their mouths.” But until someone figures out how to keep them alive in captivity for more than a few days, Shine isn’t expecting definitive genetics.

Some secrets of China’s terra-cotta army are baked in the clay

China’s first emperor broke the mold when he had himself buried with a terra-cotta army. Now insight into the careful crafting of those soldiers is coming from the clays used to build them. Custom clay pastes were mixed at a clay-making center and then distributed to specialized workshops that cranked out thousands of the life-size figures, new research suggests.

Roughly 700,000 craftsmen and laborers built Emperor Qin Shihuang’s palatial mausoleum in east-central China between 247 B.C. and 210 B.C. A portion of those workers gathered clay from nearby deposits and prepared it in at least three forms, researchers propose in the August Antiquity. On-site or nearby workshops used different signature clay recipes for terra-cotta warriors, parts of mostly bronze waterfowl figures and paving bricks for pits in which the soldiers originally stood.
Around 7,000 ceramic foot soldiers, generals and horses — equipped with a variety of bronze weapons — make up the army, which was accidentally discovered in 1974 by farmers digging a well. The emperor would have regarded the ceramic statues as a magic army that would protect him as he ruled in the afterlife, many researchers suspect.

Building and assembling the multitude was an enormous task. Workers poured clay mixtures into casts of torsos, limbs and other body parts, and then assembled the bodies, taking care to create different facial features for each soldier. Finished statues, now mostly gray, were covered in colored lacquers and likely fired in kilns. Most figures were placed inside one giant pit. Earthen walls formed 11 parallel corridors where statues stood in battle-ready rows.

Still, no workshops or debris firmly linked to the statue-making process have been found. As a result, the number, size, location and organization of workshops involved in producing the emperor’s ceramic troops remain uncertain.

Archaeologist Patrick Quinn of University College London and three Chinese colleagues studied the composition of clay samples from the site. The pieces were taken from 12 terra-cotta warriors, two acrobat statues found in a second pit, five clay bricks from the floor of the largest pit, clay fragments from inside three bronze waterfowl statues found in a third pit and part of an earthen wall in the acrobat pit.

Microscopic analysis of the samples revealed that the clay came from deposits near the tomb’s location, the scientists say. But the recipes for different parts varied. Paving bricks contained only a mixture of dark and light clays, while the clay used for warriors and acrobats had sand worked in. Sand and plant fragments were folded into a clay mixture that formed the core of the bronze waterfowl.
Sand may have made the clay more malleable for shaping into ornate figures and increased statues’ durability, the researchers speculate. Plant pieces may have helped reduce the weight of birds’ clay cores. A clay-processing site at or just outside the emperor’s mausoleum must have doled out the appropriate clay pastes to an array of workshops where potters made statues, bricks or other objects, the scientists propose.

What’s more, many statue and waterfowl samples show signs of having been slowly heated in kilns at maximum temperatures of no more than 750˚ Celsius. That’s lower by 150˚ C or more than some previous estimates, the investigators say. Fires set in an attack on the tomb after the emperor’s death may have refired some of the clay, accounting for the temperature discrepancy, the researchers say.

“I’m not at all surprised by the new findings,” says East Asian art historian Robin D.S. Yates of McGill University in Montreal. Legal and administrative documents previously found at two other Qin Empire sites describe workshops that specialized in various types of craft production, Yates says.

In some cases, artisans’ stamps and inscriptions on terra-cotta warriors match those on excavated roof tiles from Emperor Qin’s mausoleum. The markings suggest that some workshops made several types of ceramic objects, says East Asian art historian Lothar Ledderose of Heidelberg University in Germany. Inscriptions on statues also indicate that artisans working at off-site factories during the Qin Empire collaborated with potters at local workshops to produce the terra-cotta army, Ledderose says.

How science has fed stereotypes about women

Early in Inferior, science writer Angela Saini recalls a man cornering her after a signing for her book Geek Nation, on science in India. “Where are all the women scientists?” he asked, then answered his own question. “Women just aren’t as good at science as men are. They’ve been shown to be less intelligent.”

Saini fought back with a few statistics on girls’ math abilities, but soon decided that nothing she could say would convince him. It’s a situation that may feel familiar to many women. “What I wish I had was a set of scientific arguments in my armory,” she writes.
So she decided to learn the truth about what science really does tell us about differences between the sexes. “For everyone who has faced the same situation,” she writes, “the same desperate attempt to not lose control but have at hand some real facts and a history to explain them, here they are.”

In Inferior, Saini marshals plenty of facts and statistics contradicting sexist notions about women’s bodies and minds. She cites study after study showing little or no difference in male and female capabilities.

But it’s the book’s historical perspective that makes it most compelling. Only by understanding the cultural context of the men whose studies and ideas first pointed to gender imbalances can we see how deeply biases run, Saini argues.

Charles Darwin’s influential ideas reflected his times, for instance. In The Descent of Man, he wrote that “man has ultimately become superior to woman” via evolution. To a woman active in her local women’s movement, Darwin wrote, “there seems to me to be a great difficulty from the laws of inheritance … in [women] becoming the intellectual equals of man.”

If that idea sounds absurd now, don’t fool yourself into thinking it has vanished. Saini’s book is full of examples right up to today of scientists who have started from this and other flawed premises, which have led to generations of flawed studies and results that reinforce stereotypes. But the tide has been turning, as more women have entered science and more scientists of both sexes seek to remove bias from their work.
Saini does an excellent job of dissecting research on evolution, neuroscience and even the long-standing notion that women’s sexual behavior is driven by their interest in stable, monogamous relationships. By the end, it’s clear that science doesn’t divide men and women; we’ve done that to ourselves. And as scientists become more rigorous, we get closer to seeing ourselves as we really are.

Minuscule jitters may hint at quantum collapse mechanism

A tiny, shimmying cantilever wiggles a bit more than expected in a new experiment. The excess jiggling of the miniature, diving board–like structure might hint at why the strange rules of quantum mechanics don’t apply in the familiar, “classical” world. But that potential hint is still a long shot: Other sources of vibration are yet to be fully ruled out, so more experiments are needed.

Quantum particles can occupy more than one place at the same time, a condition known as a superposition (SN: 11/20/10, p. 15). Only once a particle’s position is measured does its location become definite. In quantum terminology, the particle’s wave function, which characterizes the spreading of the particle, collapses to a single location (SN Online: 5/26/14).
In contrast, larger objects are always found in one place. “We never see a table or chair in a quantum superposition,” says theoretical physicist Angelo Bassi of the University of Trieste in Italy, a coauthor of the study, to appear in Physical Review Letters. But standard quantum mechanics doesn’t fully explain why large objects don’t exist in superpositions, or how and why wave functions collapse.

Extensions to standard quantum theory can alleviate these conundrums by assuming that wave functions collapse spontaneously, at random intervals. For larger objects, that collapse happens more quickly, meaning that on human scales objects don’t show up in two places at once.

Now, scientists have tested one such theory by looking for one of its predictions: a minuscule jitter, or “noise,” imparted by the random nature of wave function collapse. The scientists looked for this jitter in a miniature cantilever, half a millimeter long. After cooling the cantilever and isolating it to reduce external sources of vibration, the researchers found that an unexplained trembling still remained.

In 2007, physicist Stephen Adler of the Institute for Advanced Study in Princeton, N.J., predicted that the level of jitter from wave function collapse would be large enough to spot in experiments like this one. The new measurement is consistent with Adler’s prediction. “That’s the interesting fact, that the noise matches these predictions,” says study coauthor Andrea Vinante, formerly of the Institute for Photonics and Nanotechnologies in Trento, Italy. But, he says, he wouldn’t bet on the source being wave function collapse. “It is much more likely that it’s some not very well understood effect in the experiment.” In future experiments, the scientists plan to change the design of the cantilever to attempt to isolate the vibration’s source.

The result follows similar tests performed with the LISA Pathfinder spacecraft, which was built as a test-bed for gravitational wave detection techniques. Two different studies found no excess jiggling of free-falling weights within the spacecraft. But the new cantilever experiment tests for wave function collapse occurring at different rate and length scales than those previous studies.
Theories that include spontaneous wave function collapse are not yet accepted by most physicists. But interest in them has recently become more widespread, says physicist David Vitali of the University of Camerino in Italy, “sparked by the fact that technological advances now make fundamental tests of quantum mechanics much easier to conceive.” Focusing on a simple system like the cantilever is the right approach, says Vitali, who was not involved with the research. Still, “a lot of things can go wrong or can be not fully controlled.”

To conclude that wave function collapse is the cause of the excess vibrations, every other possible source will have to be ruled out. So, Adler says, “it’s going to take a lot of confirmation to check that this is a real effect.”

Air pollution takes a toll on solar energy

Air pollution is a drag for renewable energy. Dust and other sky-darkening air pollutants slash solar energy production by 17 to 25 percent across parts of India, China and the Arabian Peninsula, a new study estimates. The haze can block sunlight from reaching solar panels. And if the particles land on a panel’s flat surface, they cut down on the area exposed to the sun. Dust can come from natural sources, but the other pollutants have human-made origins, including cars, factories and coal-fired power plants.

Scientists collected and analyzed dust and pollution particles from solar panels in India, then extrapolated to quantify the impact on solar energy output in all three locations. China, which generates more solar energy than any other country, is losing up to 11 gigawatts of power capacity due to air pollution, the researchers report in the Aug. 8 Environmental Science & Technology Letters. That’s a loss of about $10 billion per year in U.S. energy costs, says study coauthor Mike Bergin of Duke University. Regular cleaning of solar panels can help. Cleaning the air, however, is harder.

50 years ago, folate deficiency was linked to birth defects

Pregnant women who do not have enough folic acid — a B vitamin — in their bodies can pass the deficiency on to their unborn children. It may lead to retarded growth and congenital malformation, according to Dr. A. Leonard Luhby…. “Folic acid deficiency in pregnant women could well constitute a public health problem of dimensions we have not originally recognized,” he says. — Science News. December 9, 1967

Update
Folic acid — or folate — can prevent brain and spinal cord defects in developing fetuses. Since the U.S. Food and Drug Administration required that all enriched grain products contain the vitamin starting in 1998, birth defects have been prevented in about 1,300 babies each year. But some women still don’t get enough folate, while others may be overdoing it. About 10 percent of women may ingest more than the upper limit of 1,000 micrograms daily — about 2.5 times the recommended amount, a 2011 study found. Too much folate may increase a woman’s risk for certain cancers and interfere with some epilepsy drugs.

Collision illuminates the mysterious makeup of neutron stars

On astrophysicists’ charts of star stuff, there’s a substance that still merits the label “here be dragons.” That poorly understood material is found inside neutron stars — the collapsed remnants of once-mighty stars — and is now being mapped out, as scientists better characterize the weird matter.

The detection of two colliding neutron stars, announced in October (SN: 11/11/17, p. 6), has accelerated the pace of discovery. Since the event, which scientists spied with gravitational waves and various wavelengths of light, several studies have placed new limits on the sizes and masses possible for such stellar husks and on how squishy or stiff they are.
“The properties of neutron star matter are not very well known,” says physicist Andreas Bauswein of the Heidelberg Institute for Theoretical Studies in Germany. Part of the problem is that the matter inside a neutron star is so dense that a teaspoonful would weigh a billion tons, so the substance can’t be reproduced in any laboratory on Earth.

In the collision, the two neutron stars merged into a single behemoth. This remnant may have immediately collapsed into a black hole. Or it may have formed a bigger, spinning neutron star that, propped up by its own rapid rotation, existed for a few milliseconds — or potentially much longer — before collapsing. The speed of the object’s demise is helping scientists figure out whether neutron stars are made of material that is relatively soft, compressing when squeezed like a pillow, or whether the neutron star stuff is stiff, standing up to pressure. This property, known as the equation of state, determines the radius of a neutron star of a particular mass.

An immediate collapse seems unlikely, two teams of researchers say. Telescopes spotted a bright glow of light after the collision. That glow could only appear if there were a delay before the merged neutron star collapsed into a black hole, says physicist David Radice of Princeton University because when the remnant collapses, “all the material around falls inside of the black hole immediately.” Instead, the neutron star stuck around for at least several milliseconds, the scientists propose.

Simulations indicate that if neutron stars are soft, they will collapse more quickly because they will be smaller than stiff neutron stars of the same mass. So the inferred delay allows Radice and colleagues to rule out theories that predict neutron stars are extremely squishy, the researchers report in a paper published November 13 at arXiv.org.
Using similar logic, Bauswein and colleagues rule out some of the smallest sizes that neutron stars of a particular mass might be. For example, a neutron star 60 percent more massive than the sun can’t have a radius smaller than 10.7 kilometers, they determine. These results appear in a paper published November 29 in the Astrophysical Journal Letters.

Other researchers set a limit on the maximum mass a neutron star can have. Above a certain heft, neutron stars can no longer support their own weight and collapse into a black hole. If this maximum possible mass were particularly large, theories predict that the newly formed behemoth neutron star would have lasted hours or days before collapsing. But, in a third study, two physicists determined that the collapse came much more quickly than that, on the scale of milliseconds rather than hours. A long-lasting, spinning neutron star would dissipate its rotational energy into the material ejected from the collision, making the stream of glowing matter more energetic than what was seen, physicists Ben Margalit and Brian Metzger of Columbia University report. In a paper published November 21 in the Astrophysical Journal Letters, the pair concludes that the maximum possible mass is smaller than about 2.2 times that of the sun.

“We didn’t have many constraints on that prior to this discovery,” Metzger says. The result also rules out some of the stiffer equations of state because stiffer matter tends to support larger masses without collapsing.

Some theories predict that bizarre forms of matter are created deep inside neutron stars. Neutron stars might contain a sea of free-floating quarks — particles that are normally confined within larger particles like protons or neutrons. Other physicists suggest that neutron stars may contain hyperons, particles made with heavier quarks known as strange quarks, not found in normal matter. Such unusual matter would tend to make neutron stars softer, so pinning down the equation of state with additional neutron star crashes could eventually resolve whether these exotic beasts of physics indeed lurk in this unexplored territory.

In a first, Galileo’s gravity experiment is re-created in space

Galileo’s most famous experiment has taken a trip to outer space. The result? Einstein was right yet again. The experiment confirms a tenet of Einstein’s theory of gravity with greater precision than ever before.

According to science lore, Galileo dropped two balls from the Leaning Tower of Pisa to show that they fell at the same rate no matter their composition. Although it seems unlikely that Galileo actually carried out this experiment, scientists have performed a similar, but much more sensitive experiment in a satellite orbiting Earth. Two hollow cylinders within the satellite fell at the same rate over 120 orbits, or about eight days’ worth of free-fall time, researchers with the MICROSCOPE experiment report December 4 in Physical Review Letters. The cylinders’ accelerations match within two-trillionths of a percent.

The result confirms a foundation of Einstein’s general theory of relativity known as the equivalence principle. That principle states that an object’s inertial mass, which sets the amount of force needed to accelerate it, is equal to its gravitational mass, which determines how the object responds to a gravitational field. As a result, items fall at the same rate — at least in a vacuum, where air resistance is eliminated — even if they have different masses or are made of different materials.

The result is “fantastic,” says physicist Stephan Schlamminger of OTH Regensburg in Germany who was not involved with the research. “It’s just great to have a more precise measurement of the equivalence principle because it’s one of the most fundamental tenets of gravity.”
In the satellite, which is still collecting additional data, a hollow cylinder, made of platinum alloy, is centered inside a hollow, titanium-alloy cylinder. According to standard physics, gravity should cause the cylinders to fall at the same rate, despite their different masses and materials. A violation of the equivalence principle, however, might make one fall slightly faster than the other.

As the two objects fall in their orbit around Earth, the satellite uses electrical forces to keep the pair aligned. If the equivalence principle didn’t hold, adjustments needed to keep the cylinders in line would vary with a regular frequency, tied to the rate at which the satellite orbits and rotates. “If we see any difference in the acceleration it would be a signature of violation” of the equivalence principle, says MICROSCOPE researcher Manuel Rodrigues of the French aerospace lab ONERA in Palaiseau. But no hint of such a signal was found.

With about 10 times the precision of previous tests, the result is “very impressive,” says physicist Jens Gundlach of the University of Washington in Seattle. But, he notes, “the results are still not as precise as what I think they can get out of a satellite measurement.”

Performing the experiment in space eliminates certain pitfalls of modern-day land-based equivalence principle tests, such as groundwater flow altering the mass of surrounding terrain. But temperature changes in the satellite limited how well the scientists could confirm the equivalence principle, as these variations can cause parts of the apparatus to expand or contract.

MICROSCOPE’s ultimate goal is to beat other measurements by a factor of 100, comparing the cylinders’ accelerations to see whether they match within a tenth of a trillionth of a percent. With additional data yet to be analyzed, the scientists may still reach that mark.

Confirmation of the equivalence principle doesn’t mean that all is hunky-dory in gravitational physics. Scientists still don’t know how to combine general relativity with quantum mechanics, the physics of the very small. “The two theories seems to be very different, and people would like to merge these two theories,” Rodrigues says. But some attempts to do that predict violations of the equivalence principle on a level that’s not yet detectable. That’s why scientists think the equivalence principle is worth testing to ever more precision — even if it means shipping their experiments off to space.

Why science still can’t pinpoint a mass shooter in the making

Immediately after a 19-year-old shot and killed 17 people and wounded 17 others at a Florida high school on Valentine’s Day, people leaped to explain what had caused the latest mass slaughter.

By now, it’s a familiar drill: Too many readily available guns. Too much untreated mental illness. Too much warped masculinity. Don’t forget those shoot-’em-up video games and movies. Add (or repeat, with voice raised) your own favorite here.

Now the national debate has received an invigorated dose of activism. Inspired by students from the targeted Florida high school, as many as 500,000 people are expected to rally against gun violence and in favor of stricter gun laws on March 24 in Washington, D.C., with sister marches taking place in cities across the world. But a big problem haunts the justifiable outrage over massacres of innocents going about their daily affairs: Whatever we think we know about school shootings, or mass public shootings in general, is either sheer speculation or wrong. A science of mass shootings doesn’t exist.

“There is little good research on what are probably a host of problems contributing to mass violence,” says criminologist Grant Duwe of the Minnesota Department of Corrections in St. Paul. Duwe has spent more than two decades combing through federal crime records and newspaper accounts to track trends in mass killings.
Perhaps this dearth of data is no surprise. Research on any kind of gun violence gets little federal funding (SN Online: 3/9/18; SN: 5/14/16, p. 16). Criminologist James Alan Fox of Northeastern University in Boston has argued for more than 20 years that crime researchers mostly ignore mass shootings. Some of these researchers assume that whatever causes people to commit any form of murder explains mass shootings. Others regard mass killings as driven by severe mental disorders, thus falling outside the realm of crime studies.

When a research vacuum on a matter of public safety meets a 24-hour news cycle juiced up on national anguish, a thousand speculations bloom. “Everybody’s an expert on this issue, but we’re relying on anecdotes,” says sociologist Michael Rocque of Bates College in Lewiston, Maine.

Rocque and Duwe published a review of what’s known about reasons for mass public shootings, sometimes called rampage shootings, in the February Current Opinion in Psychology. Their conclusion: not much. Scientific ignorance on this issue is especially concerning given that Rocque and Duwe describe a slight, but not unprecedented, recent uptick in the national rate of rampage shootings.
Shooting stats
Defining mass public shootings to track their frequency is tricky. A consensus among researchers is emerging that these events occur in public places, include at least four people killed by gunshots within a 24-hour period and are not part of a robbery or any other separate crime, Rocque and Duwe say. Such incidents include workplace and school shootings.
Overall, mass public shootings are rare, Duwe says, though intense media coverage may suggest the opposite. Even less obvious is that rampage shootings have been occurring for at least 100 years.

Using Federal Bureau of Investigation homicide reports, Congressional Research Service data on mass shootings and online archives of news accounts about multiple murders, Duwe has tracked U.S. rates of mass public shootings from 1915 to 2017.

He has identified a total of 185 such events through 2017, 150 of which have occurred since 1966. (In 2016, he published results up to 2013 in the Wiley Handbook of the Psychology of Mass Shootings.) In the earliest known case, from 1915, a Georgia man shot five people dead in the street, after killing an attorney he blamed for financial losses, and wounded 32 others. Another lawyer, who came to the crime scene upon hearing gunshots and was wounded by a bullet, ended the rampage when he grabbed a pistol from a hardware store and killed the shooter.

What stands out more than a century later is that, contrary to popular opinion, mass public shooting rates have not ballooned to record highs. While the average rate of these crimes has increased since 2005, it’s currently no greater than rates for some earlier periods. Crime trends are usually calculated as rates per 100,000 people for, say, robberies and assaults. But because of the small number of mass public shootings, Duwe calculates annual rates per 100 million people in the United States.

The average annual rate of mass public shootings since 2010 is about 1.44 per 100 million people. That roughly equals the 1990s rate of 1.41, Duwe finds.

The average annual rate from 1988 to 1993 reached 1.52, about the same as the 1.51 rate from 2007 to 2012. After dropping to just below 1 per 100 million people in 2013 and 2014, rates increased to nearly 1.3 the next three years.

From 1994 to 2004, rates mostly hovered around 1 per 100 million people or below, but spiked to over 2.5 in 1999. That’s the year two teens killed 13 people at Columbine High School in Colorado.

In contrast, rates were minuscule from 1950 to 1965, when only three mass public shootings were recorded. The average annual rate for 1970 to 1979 reached 0.52, based on 13 mass public shootings.

Numbers of people killed and wounded per shooting incident have risen in the last decade, though. Two events in 2012 were particularly horrific. Shootings at a movie theater in Aurora, Colo., and an elementary school in Newtown, Conn., resulted in 40 murders, many of children, and 60 nonfatal gunshot wounds. Whether this trend reflects an increasing use of guns with large-capacity magazines or other factors “is up for grabs,” Duwe says.
The unknowns
No good evidence exists that either limiting or loosening gun access would reduce mass shootings, Rocque says. Virtually no research has examined whether a federal ban on assault weapons from 1994 to 2004 contributed to the relatively low rate of mass public shootings during that period. The same questions apply to concealed-carry laws, promoted as a way to deter rampage killers. As a gun owner and longtime hunter in his home state of Maine, Rocque calls for “an evidence-based movement” to establish links between gun laws and trends in mass shootings.

Mental illness also demands closer scrutiny, Duwe says. Of 160 mass public shooters from 1915 to 2013, about 60 percent had been assigned a psychiatric diagnosis or had shown signs of serious mental illness before the attack, Duwe has found. In general, mental illness is not linked to becoming violent. But, he says, many mass shooters are tormented and paranoid individuals who want to end their painful lives after evening the score with those they feel have wronged them.

Masculinity also regularly gets raised as a contributor to mass public shootings. It’s a plausible idea, since males committed all but one of the tragedies in Duwe’s review. Sociologist Michael Kimmel of Stony Brook University in New York contends that a sense of wounded masculinity as a result of various life failures inspires rage and even violence. But researchers have yet to examine how any facet of masculinity plays into school or workplace shootings, Rocque says.

Although school shooters often report feeling a desperate need to make up for having been inadequate as men, many factors contribute to their actions, argues clinical psychologist Peter Langman. Based in Allentown, Pa., Langman has interviewed and profiled several dozen school shooters in the United States and other countries.
He divides perpetrators into three psychological categories: psychopathic (lacking empathy and concern for others), psychotic (experiencing paranoid delusions, hearing voices and having poor social skills) and traumatized (coming from families marked by drug addiction, sexual abuse and other severe problems).

But only a few of the millions of people who qualify for those categories translate their personal demons into killing sprees. Any formula to tag mass shooters in the making will inevitably round up lots of people who would never pose a deadly threat.

“There is no good evidence on what differentiates a bitter, aggrieved man from a bitter, aggrieved and dangerous man,” says psychologist Benjamin Winegard of Carroll College in Helena, Mont.

Nor does any published evidence support claims that being a bully or a victim of bullying, or watching violent video games and movies, leads to mass public shootings, Winegard contends. Bullying affects a disturbingly high proportion of youngsters and has been linked to later anxiety and depression (SN: 5/30/15, p. 12) but not to later violence. In laboratory studies, youngsters who play violent computer games or watch violent videos generally don’t become more aggressive or violent in experimental situations. Investigators have found that some school shooters, including the Newtown perpetrator, preferred playing nonviolent video games, Winegard says.

He and a colleague presented this evidence in the Wiley Handbook of the Psychology of Mass Shootings. Northeastern’s Fox also coauthored a chapter in that publication.

Still, a small but tragic group of kids lead lives that somehow turn them into killers of classmates or random strangers (SN: 5/27/06, p. 328). If some precise mix of, say, early brain damage, social ineptitude, paranoia and fury over life’s unfair twists cooks up mass killers, scientists don’t know the toxic recipe. And it won’t be easy to come up with one given the small number of mass public shooters to study.

Duwe recommends that researchers first do a better job of documenting the backgrounds of individual mass shooters and any events or experiences that may have precipitated their deadly actions. Then investigators can address broader social influences on mass shootings, including gun legislation and media coverage.

But more than a century after a distraught Georgia man mowed down six of his fellow citizens, research on mass violence still takes a backseat to public fear and outrage. “If we’re bemoaning the state of research,” Duwe says, “we have no one to blame but ourselves.”

All you need to know about the history of black holes

Black holes have been beguiling from the very beginning.

Hinted at as early as the 1780s and predicted by Einstein’s general theory of relativity, they didn’t get the name we know today until the 1960s. Bizarre beasts that squash gobs of matter into infinitely dense abysses, black holes were once thought to be merely a mathematical curiosity.

But astronomers tallied up evidence for black holes’ existence bit by bit, puzzling over where these behemoths live, how they gulp down matter and what their existence means for other physics theories.

For more than a decade, a team of researchers has been engrossed in an ambitious effort to snap a picture of a black hole for the very first time. And now they’ve done it. What better time to think back to black holes’ origins and the journey so far?