Exercise helps you get in shape for old age

In our teens and 20s, many of us feel unstoppable. But after age 30, everyday life starts to get a little harder. Knees ache, hangovers last two days, younger family members begin to outrun us and we can’t remember what we did with our keys. With aches, pains and busy schedules, exercise can be a low priority, especially when it won’t necessarily help our waistlines. But exercising as we age can help preserve muscle mass so we can go the distance. It can even help us remember our keys.

After we hit 35, most of us just aren’t as strong or as fast as we used to be. “In normal aging there are a lot of physiological things that happen that decrease performance over the years,” explains Myriam Paquette, an exercise physiologist at Laval University in Quebec City. She notes that the maximum amount of oxygen we can use (VO2 max) and our overall muscle mass decrease, and, along with them, the strength and power they provide.

Exercise training can keep some of these effects at bay. “As soon as you hit 35 or 40, you need to start doing resistance [exercise],” says John Hawley, an exercise physiologist at Australian Catholic University in Sydney. “You muscles are being remodeled constantly. “As the muscle gets older … it gets resistant to building up.” So the older people get, the harder they have to work to get — and keep — their gains.

For VO2 max, decreases in maximum oxygen can mean decreased athletic performance. But “if people do high intensity training, that can be delayed five to 10 years,” says Michael Joyner, a physiologist at the Mayo Clinic in Rochester, Minn.

Enough exercise can even keep older athletes racing with the pros — as long as they run far enough. Sian Allen and Will Hopkins at the Sports Performance Research Institute New Zealand in Auckland gathered studies of peak competitive performance and found that for elite athletes, peak performance age increased as distance increased. Athletes who compete in short swimming events tended to peak at 20, while ultra-distance cyclists peaked at 39, they reported in the June 2015 Sports Medicine. Some of this may be for social reasons, Joyner notes — until the past few decades, distance events didn’t have the focus or coaching (or funding) that is characteristic of sprint distances.

Older athletes may not be at peak VO2 max and muscle mass, but they can take advantage of something only age provides — experience. “Being able to react to changes in conditions, mental resilience, pacing strategies, these are things you are able to accumulate,” Allen says. She suggests that learning and experience may assist people competing at later ages across longer distances, “As opposed to shorter distances that…[are] more raw expression of power.”

Age also takes a toll on the brain. This isn’t just for the retirees: Word recall, spatial reasoning and even processing speed can begin to decline in the early 30s. One of the brain benefits of exercise is an increase in the birth of new brain cells. As we get older, exercise proves protective both for brain structure and function. Sedentary people show decreases in white and gray matter as they age. Physical activity, even walking 72 blocks per week, helps preserve gray matter in older adults in areas such as the hippocampus — a brain area important for memory. Keeping up aerobic activity also improves cognitive control in middle-aged and older people — including tasks such as planning and working memory.
Some of this might be associated with the fact that keeping up aerobic activity means retaining VO2 max, says Takashi Tarumi, an exercise physiologist at the University of Texas Southwestern Medical Center in Dallas. Middle-aged endurance athletes with higher VO2 max also have better brain blood flow. That better blood flow is associated with better performance in memory and attention tasks — key to remembering where exactly you put those keys. Tarumi and his colleagues published their results in a 2013 study in the Journal of Hypertension.

While working out for weight loss or a beach body may be an exercise primarily in frustration, exercise is far from fruitless. It’s an investment toward stronger muscles and better endurance — whether for marathons or getting up the stairs. And staving off cognitive decline is probably well worth a few hours in the gym.

SPIDER shrinks telescopes with far-out design

In the space business, weight and size are what run up the bills. So imagine the appeal of a telescope that’s a tenth to as little as a hundredth as heavy, bulky and power hungry as the conventional instruments that NASA and other government agencies now send into space. Especially alluring is the notion of marrying the time-tested technology called interferometry, used in traditional observatories, with the new industrial field of photonics and its almost unimaginably tiny optical circuits.

Say hello to SPIDER, or Segmented Planar Imaging Detector for Electro-optical Reconnaissance.
But its inventors believe that, once demonstrated at full-scale, SPIDER will replace standard telescopes and long-range cameras in settings where room is scarce, such as on planetary probes and reconnaissance satellites.

Researchers at the Lockheed Martin Advanced Technology Center in Palo Alto, Calif., with partners in a photonics lab at the University of California, Davis, have described work on SPIDER for several years at specialty conferences. In January, they revealed their progress with a splash to the public in a press release and polished video.

Somewhat like a visible-light version of a vast field of radio telescopes, but at a radically smaller scale, a SPIDER scope’s surface would sparkle with hundreds to thousands of lenses about the size found on point-and-shoot cameras. The instrument might be a foot or two across and only as thick as a flat-screen TV.

Transit system for light
SPIDER probably won’t be equivalent to a large instrument such as the Hubble Space Telescope, but it could be a smaller, lighter alternative to modest telescopes and long-range cameras. Experts tend to rank telescopes by their aperture — the size of the bucket that catches light or other such radiation. The wider the bucket’s mouth, the higher the resolution. Ordinarily, behind the bucket’s maw is an extensive framework for massive lenses, mirrors and heating or cooling systems. Hubble’s aperture spans 2.4 meters; its power-generating solar panels enlarge it to the size and weight of a winged city bus. Even a compact telescope with a saucer-sized lens might have more than a kilogram of equipment stretched behind its face for a third of a meter or so.
Alan Duncan, a senior fellow at Lockheed Martin’s Advanced Technology Center, has devoted much of his career to space and reconnaissance imaging. He often focuses on interferometry, a method astronomers have long used to combine electromagnetic waves — both radio and visible — from several different telescopes. The results, with the help of computers, are images more sharply focused than from any of the smaller telescopes or radio dishes. Yet even with the leverage of conventional interferometry, Duncan struggled to slash the SWaP: size, weight and power demand.

His ambitions leapt at the Photonics West 2010 meeting in San Francisco. He learned that IBM researchers had a supercomputer design that would need relatively little energy to cool its electronic innards. They proposed finely laced channels through which data-filled beams of light would travel to deliver the computer’s output data. The setup would require a fraction of the energy of standard, integrated electronic chips that use metal wiring.
Duncan stared at the skeins of optical channels and the millions of junctions portrayed on the screen during the IBM talk. He recalls seeing “about as many optical interconnects as a digital camera has pixels.” (A point-and-shoot camera’s pictures can have several megapixels, or millions of individual dots.) He imagined turning IBM’s tactic on its head. “They create photons in the chip, impose information on them and send them out to be decoded. What if you captured the light waves on the outside?” Duncan says. “The photons already have the [image] information you want.… You have to decode it inside the device. The decoder is the interferometer.”

The IBM people had not designed an interferometer, of course, but their optical circuitry seemed sophisticated enough to be adaptable to interferometry. Duncan figured that the fast-growing photonics industry already had or would soon invent fabrication solutions that his suddenly imagined telescope could use. Already, photonics companies were selling machines to create transparent channels or waveguides only a few millionths of a meter wide.

Considerably smaller than the fibers bundled into fiber-optic cables that carry data across continents and under oceans, photonic waveguides are made by finely focused, pulsating laser beams. As the beams scan along inside silicon-based photonic integrated circuits, or PICs, they leave behind close-packed strings in molten silicon that swiftly merge and cool. The resulting trails of transparency are superb transit systems for light, and they can be laser-incised in any pattern desired. Similar wizardry can shrink the scale of other optical gadgetry, such as filters to sort the signals by color, or the interferometry gadgetry to mix signals from different lenses in a SPIDER scope.

Decoding fringes
Interferometry does not produce pictures the way a conventional telescope does. Telescopes refract a scene’s incoming light through lenses or bounce it off of mirrors. The lenses or mirrors are shaped so that light beams, or photons, from a given part of a scene converge on a corresponding place on a photo-sensitive surface such as an image chip of a digital camera, similar to the retina of an eye.

Interferometry, instead, gathers signals from pairs of receivers — sometimes many pairs — all aimed at the same scene. It combines the signals to reveal the slight differences in the phases and strengths of the radio, light or other waves. The separate wave trains, or signals, are projected on a screen in an interferometry chamber as patterns of light and dark fringes where the signals from the paired receivers reinforce or counteract each other. The fringes, somewhat resembling checkout counter bar codes, carry a distinct, encoded hint of the difference in the viewed object as seen from the receivers’ offset positions in the aperture. With enough measurements of fringes from enough pairs of waves gathered by enough small receivers, a computer can deduce a picture that is as sharp as from a telescope with a lens as wide as the distance between the most widely spaced lenses, for example, on a SPIDER’s face.
Building a tiny version of this using photonics requires separate sets of waveguides for different colors or “spectral bins.” The more bins used, the more accurately an object can be portrayed. But each such layer of complexity aggravates the chore of fabrication.
So even a bare-bones SPIDER may need thousands of waveguides. Advanced SPIDERs may have millions of them. As far as Duncan knows, SPIDER would be the most complicated interferometer ever made.

Spycraft and space views
After his epiphany, Duncan began working with Lockheed colleagues, chiefly technology expert Richard L. Kendrick. Computed simulations convinced them that their mini-interferometer should work. In 2012, Lockheed Martin filed for a patent — granted in late 2014 — naming the two men as the inventors. Reflecting the company’s defense ties, the document provides a hypothetical application: SPIDER in a proposed, high-altitude Pentagon recon drone called Vulture, perhaps built into the curved bottom of a wing.

Initial simulations showed how SPIDER’s pictures of one satellite taken from another, or of buildings as seen from space, compare with pictures by standard long-range cameras. Interferometric images, due to the complex calculations using the equations of Fourier transforms, often have extra flares and streaks. Nonetheless, to a layman’s eye, the simulated SPIDER images look about the same as equivalent ones from standard lens or mirror telescopes.

If SPIDER pans out, its inventors imagine uses beyond spycraft. NASA is planning a mission to orbit Jupiter’s moon Europa (SN Online: 5/26/15). The SPIDER team calculates that, given the same space that has already been assigned to a conventional imager, SPIDER’s instrument could inspect 10 times the terrain at 17 times better resolution. SPIDER should be able to have a wider array of lenslets — or receivers — take pictures at points farther from Europa on the craft’s elliptical orbit and should have a wider field of view.

One proposed design for the first fully operable, but spartan, SPIDER is to have 37 radial blades, each backed by a single photonic chip with 14 lenslets along one edge. The whole model would be about the size of a dinner plate. Eventually, a SPIDER might be built on the face of a single chip of similar or larger size. This would allow more lenslets to be fitted, and permit waveguides to pair them up from anywhere in the aperture. Upshot: more “eyes” packed into the same space.
The Lockheed group has begun to fabricate test components in partnership with a photonics laboratory led by Ben Yoo, professor of electrical and computer engineering at UC Davis. DARPA, the Department of Defense’s agency for funding advanced research, granted about $2 million for prototype photonic integrated circuits and other gear to test the idea’s feasibility.

The technical challenges are extreme. Each tiny lenslet could need 200 or more separate waveguides leading from its focal area to the interferometers. For a fairly simple SPIDER scope, that would mean tens of thousands of waveguides coursing through the chips’ insides — perhaps fabricated many layers deep. So far, the researchers have built prototype components with only four lenslets, too few to get images.

Skeptics and a crusader
At least one top authority says the scheme is nonsense. Others are more amused than critical. Michael Shao, an MIT-trained astronomer and project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif., has extensive experience with interferometry. He calls the concept of SPIDER “fundamentally sound,” but adds that it will require such extensive optical plumbing on a photonic scale that the sheer complexity “would scare a lot of folks away.” If the SPIDER team makes it work, great. “But it is a lot of work to save a little space.”

Peter Tuthill, an astronomer at the University of Sydney in Australia, leads one of the world’s busiest interferometry groups. His team has augmented such large conventional ground-based telescopes as the Keck Observatory in Hawaii with auxiliary interferometers. His group also designed an interferometer to be included on the James Webb Space Telescope, planned successor to the Hubble. After looking over the SPIDER proposal, he declared by e-mail, “I think the argument made that this can be somehow cheaper, simpler, lower mass and higher performance than conventional optics appears not to pass the laugh test.”

The extremely large number of waveguides in the SPIDER design, he added, would leave the signal strength per waveguide too feeble — hence vulnerable to swamping by noise in the system. “In short, I don’t think (the SPIDER team members) are waiting for technology to enable their platform. I think they are waiting for a miracle that defies physics.”

Duncan just smiles when he hears Tuthill’s opinion. Even if technical difficulties delay or quash this initial SPIDER project, he is confident somebody will step in and surmount any barriers. “It will happen,” he says.

Ceres is more than just a space rock

Like an interplanetary parfait, the dwarf planet Ceres appears to have layers.

A pliable outer shell of minerals, ices and salts encapsulates a core of solid rock, a new study suggests. This first peek inside Ceres — courtesy of NASA’s Dawn spacecraft — can help researchers explain some mysteries on the surface and provide insight into the many ways planets and asteroids might be assembled. Ryan Park, a planetary scientist at the Jet Propulsion Laboratory in Pasadena, Calif., and colleagues report the findings online August 3 in Nature.
“Before we got to Ceres, we didn’t know what the interior looked like,” Park says. “Its evolution is more complex than what we envisioned.”

Ceres is the largest body in the asteroid belt, the field of rocks that lies between the orbits of Mars and Jupiter. The Dawn spacecraft has been orbiting Ceres since March 6, 2015, its second stop after spending 14 months at the asteroid Vesta (SN: 4/4/15, p. 9). As Dawn loops around Ceres, slight changes in the speed of the spacecraft — deviations of less than 0.1 millimeters per second — reveal the dwarf planet’s gravity field. By combining these measurements with images that show the overall shape of Ceres, the researchers deduced how mass is spread out inside. The core has a density similar to some meteorites; the shell (roughly 70 to 190 kilometers thick) is about two-thirds as dense.
Mountains on Ceres appear to float on a deformable layer of minerals and volatile elements that easily evaporate, Park and collaborators report. If Ceres were completely solid, then gravity over a mountain would be stronger than the surrounding terrain because of the increased mass. But gravity on Ceres doesn’t vary with topography, the researchers find. This suggests that mountains and hills displace mass beneath the surface, “like how a boat floats on water,” says Park. To keep the underlying layer slightly flexible, the temperature inside Ceres must be warm relative to the surface. That heat could come from radioactive decay or be left over from when Ceres assembled itself over 4 billion years ago.
This segregation of material — a solid core topped with a malleable crust — can help researchers learn about the environment in which Ceres formed, says Simone Marchi, a planetary scientist at the Southwest Research Institute in Boulder, Colo. Densities within these layers can lead to estimates of how much ice and radioactive material lies buried beneath the surface, he says — abundances which depend on how far from the sun Ceres was born.

Understanding the internal structure could also be key to solving a mystery: No craters on Ceres are wider than about 280 kilometers, which is odd given what researchers know about the population of rocks that should have slammed into it (SN: 9/5/15, p. 8). Something probably eroded those craters, though it’s not yet clear what. Marchi speculates that the erosion has something to do with Ceres’ internal evolution and composition.

Aside from getting an idea of how Ceres is put together, the findings can be applied to other worlds both in our solar system and around other stars, says Peter Thomas, a planetary scientist at Cornell University. Insight from Ceres adds “a whole new dimension of things that may not have been imagined before,” he says. “How many different kinds of objects — planets, dwarf planets, asteroids — can you get?”

Colugo genome reveals gliders as primate cousins

Primates may have some high-flying relatives. Colugos, small mammals that glide from treetop to treetop in forests throughout Southeast Asia, have an evolutionary history that’s long been debated. Their teeth look similar to tree shrews’ teeth, while other skull and genetic features resemble those of primates. (Past studies have even linked colugos to bats and other insect-eating mammals.)

In an effort to settle the debate, William Murphy, a geneticist at Texas A&M University in College Station, and colleagues have deciphered the genome of a male Sunda colugo (Galeopterus variegatus) from West Java, Indonesia. Comparing colugo DNA with 21 other mammal genomes, the team found that colugos are most closely related to primates, while tree shrews took different evolutionary paths to arrive at similar traits. There are also changes in genes related to vision and gliding that are unique to colugos, the researchers report August 10 in Science Advances.
Genetic data from colugos preserved in museums also show that the animals are more diverse than suspected. While only two species have been described in the wild, the team found at least seven separate genetic lineages, which may represent individual species.

The weird mating habits of daddy longlegs

COLUMBIA, Mo. — If you find a daddy longlegs in your house, don’t be scared. “Daddy longlegs are actually pretty docile animals when it comes to interacting with humans,” says evolutionary biologist Kasey Fowler-Finn, who studies the arachnids at St. Louis University. Specifically, she studies daddy longlegs sex. She is using this common group of arachnids (they’re not spiders) to explore how mating behaviors can be shaped by evolutionary forces.

Daddy longlegs — which can be found in forests, in leaf litter, on tree trunks and, of course, in your garage in eastern North America — are a group of harvestmen with elongated legs. And like all harvestmen, their second pair of legs, which is used in sensory exploration instead of walking, is particularly long.

But what makes daddy longlegs especially interesting is what happens when they mate. “Most of us just think ‘ew’ when we see them, but they have this really fascinating suite of [mating] behaviors,” Fowler-Finn said July 31 at the 53rd Annual Conference of the Animal Behavior Society. “The same basic stuff happens with all species in the clade, but the details vary quite a bit.”

The mating ritual starts with individuals bumping into each other (scientists don’t yet know how males and females find one another). “Then shortly thereafter, males will attempt to engage the females in what’s called a ‘mating embrace,’” Fowler-Finn said. “They hook their pedipalps [a type of appendage on the front of the arachnid] behind the female’s sensory legs … and then there’s a bunch of back and forth between males and females that varies in duration across species.” Mating can last for 15 seconds in some species, and three to four hours in others. The male then delivers a nuptial gift and his ejaculate, and the pair separates.

There can be a lot of aggression during all of this, with males and females biting each other and even losing legs during mating. And this, too, can vary from species to species. Leiobunum vittatum encounters, for instance, are almost always violent, while L. aldrichi matings are aggressive only about half of the time.

L. aldrichiis one of Fowler-Finn’s favorites. “The male actually grabs the female’s second leg … and then they shake them by one leg,” she said. “And, in fact, this is so particular to the second leg that males who initially grab other legs on the female will continue to search until they find that second leg. So there’s something really cool going on here.” What that might be, though, is a mystery.

Fowler-Finn is still working out whether characteristics of the various daddy longlegs species can predict their mating styles. But she noted that she and her colleagues are finding a lot of variation in behavior not just across species but also by geographic area. She suspects that as she and her team describe these differences, they are going to find evidence for plenty of new species to scare the arachnophobes out there.

Bonobos adept at nut cracking

Bonobos — chimpanzees’ sister species — don’t get the credit they deserve as tool users.

Bonobos in a sanctuary’s protected forests in the Democratic Republic of Congo crack nuts with stones nearly as well as wild chimps in other parts of Africa do, researchers report online August 26 in the American Journal of Primatology. Wild bonobos have rarely been observed using tools and have never been reported to pound open nuts with stones (SN: 9/19/15, p. 22).

All 18 adult and adolescent bonobos tracked during April and May 2015 cracked oil palm nuts with stones of various sizes that researchers had placed near oil palm trees, says a team led by Johanna Neufuss of the University of Kent in England. Bonobos chose pounding stones well-suited to busting palm oil nutshells. These animals employed 15 grips to hold nut-cracking stones, including 10 grips not previously observed in nonhuman primates.

Genetic surgery is closer to reality

Genetic surgery is far away for humans — Optimism concerning application of genetic experiments to improve mankind is unwarranted now, a Canadian pediatrician told the Third International Congress of Human Genetics meeting in Chicago…. Although striking and sometimes controversial experiments in genetic surgery have in fact been performed in multicellular systems, he explained, public demand seems likely to outstrip scientific resources for the treatment of many forms of genetic disease. — Science News, September 24, 1966

UPDATE
Things are looking up for “genetic surgery.” Gene therapy has been around since the 1980s, but researchers have recently developed more precise gene-editing tools, including one that sent a child’s leukemia into remission in 2015. Scientists are most excited about a molecular scalpel known as CRISPR/Cas9 that cuts and manipulates DNA (SN: 9/3/16, p. 22). Researchers are optimistic about the tool’s potential to treat several diseases, but it may be a while before CRISPR is widely used.

Nuclear blasts, other human activity signal new epoch, group argues

Humankind’s bombs, plastics, chickens and more have altered the planet enough to usher in a new chapter in Earth’s geologic history. That’s the majority opinion of a group of 35 experts tasked with evaluating whether the current human-dominated time span, unofficially dubbed the Anthropocene, deserves a formal place in Earth’s geologic timeline alongside the Eocene and the Pliocene.

In a controversial move, the Anthropocene Working Group has declared that the Anthropocene warrants being a full-blown epoch (not a lesser age), with its start pegged to the post–World War II economic boom and nuclear weapons tests of the late 1940s and early 1950s. The group made these provisional recommendations August 29 at the International Geological Congress in Cape Town, South Africa.
If eventually approved by the International Commission on Stratigraphy (ICS) — the gatekeepers of geologic time — and the Executive Committee of the International Union of Geological Sciences, the Anthropocene would usurp the current Holocene Epoch, which has reigned since the end of the last glacial period around 11,700 years ago. The Holocene would become the shortest completed epoch in history, just thousandths the length of the next shortest epoch.

“We’ve left an indelible mark on the Earth,” says Jan Zalasiewicz, a geologist at the University of Leicester in England and convener of the working group. “We now cannot go back to anything that’s ostensibly the same as the Holocene.”

Not all scientists are onboard with the plan. Critics say it’s grounded in politics and pop culture, not science, and that not enough time has passed to put just decades-old changes in context. Any proposal advocating for the Anthropocene will face strong skepticism, says Whitney Autin, a sedimentary geologist at the State University of New York at Brockport. “The idea of amending geologic time carries the same weight as eliminating an amendment to the U.S. Constitution,” he says.
To build its case for the new epoch, the working group will spend the next two to three years scouring natural records, such as rocks, mud and tree rings, for evidence that humankind’s impacts have brought about a distinct new phase in the stratigraphic record. The group will then submit a formal proposal for approval.

“We’re leaving physical signals in sediments, in corals, in trees that are going to be long lasting if not permanent,” says Colin Waters, a geologist at the British Geological Survey in Keyworth and a member of the working group. “It’s not just history, it’s geology as well.” And those geologic changes merit official recognition as a new epoch, Waters says.

The goal of the geologic time scale is to label and formalize discrete phases in Earth’s stratigraphic record as a tool for geologists and other scientists. This time scale allows scientists to easily identify, describe and discuss rocks of similar age across the planet.

The term “Anthropocene” has risen in popularity among scientists and the general public in recent years, driven in part by its use in a 2002 article by atmospheric chemist and Nobel laureate Paul Crutzen. The article argued that humans’ exploitation of natural resources has reshaped the planet enough to bring about a new epoch.

While “Anthropocene” now appears in the titles of papers, conference talks and books about everything from climate change to philosophy, those who embrace the term nonetheless disagree on its definition. Some researchers pin the start of the epoch to when humans first started converting forests to farmland thousands of years ago, while others, such as Crutzen, use the start of the Industrial Revolution or the recent acceleration in fossil fuel burning.

The Anthropocene Working Group was convened by the ICS in 2009 to sort out the definition of the Anthropocene and assess whether the time interval should be formally added to the geologic time scale. Among its 35 members, the working group contains an international mix of geologists, climate scientists, archaeologists and other experts.

In January, members of the working group published a review of evidence for the Anthropocene in Science. Pro-Anthropocene arguments come from multiple areas of science, from biology to climate to chemistry, the researchers reported. For instance, humans have introduced species such as the domestic chicken worldwide and driven many others to extinction (SN Online: 8/26/15). Emissions from human activities such as fossil fuel burning have altered Earth’s climate (SN: 4/16/16, p. 22). Manufactured materials such as plastics, aluminum and concrete will remain embedded in the ground as “technofossils.” Fallout from nuclear weapons tests has left a radioactive mark in soil, marine sediments and even ice. These human impacts make the Anthropocene distinct in the stratigraphic record from the Holocene, the researchers concluded.

For the Anthropocene to become official, the working group will have to establish a starting point for the proposed epoch. That can be accomplished by picking a nice round number — the Hadean-Archean switchover is an even 4 billion years ago, for instance — or by linking the starting point to a physical marker in the global sedimentary record, an approach now favored by ICS.

The marker for the start of the Holocene, for instance, is linked to chemical and physical changes in the Greenland ice sheet caused by the warming that brought Earth out of its last bout of glacial growth. Such markers — also called “golden spikes,” similar to the ceremonial spike that marked the union of the first U.S. transcontinental railroad — are chosen for being ubiquitous and consistent throughout the world.
Golden spikes are not necessarily important or even relevant to the differences that distinguish geologic time frames, says Stan Finney, a geologist at California State University, Long Beach, and former chair of the ICS. For instance, the Thanetian Age — a 3.2-million-year stretch during the Paleocene Epoch — is marked by just one of many reversals in Earth’s magnetic field.

While a golden spike’s geologic signal may be global, the official physical spike itself is literally a single point in the stratigraphic record somewhere on Earth. (A single point avoids the problem of using multiple points that could end up having different ages, muddling the time boundary.) The golden spike for the Holocene is inside an ice core collected from Greenland and kept chilled in a freezer at the University of Copenhagen.

The need for a golden spike shaped the working group’s Anthropocene proposal, Zalasiewicz says. While phases in human history such as early agriculture and the Industrial Revolution have had profound impacts on the planet, they didn’t have a simultaneous worldwide effect that could be used to mark the start of the new epoch. Had a major volcanic eruption spewed a distinctive layer of ash across the globe near the start of the Industrial Revolution, “it would have been a pretty good candidate,” Zalasiewicz says. Even though the eruption would have had nothing to do with human activity, the ash would have been a ubiquitous and easily identifiable marker for geologists.

Radioactive carbon and plutonium blasted from the ramp up in atmospheric nuclear tests during the 1950s is another story. And the timing is so recent that it opens up many new places to hunt for the proposed epoch’s golden spike, including in living organisms such as trees and corals. “We’re a bit like confused kids wandering around an enormous sweetshop wondering how we’re going to choose,” Zalasiewicz says.

Even if the group finds a golden spike, its proposal will face criticism from scientists who contend that the Anthropocene doesn’t warrant its own epoch. Radioactive fallout “is a widespread marker that qualifies for the rules that they need to follow to make a recommendation,” says William Ruddiman, a professor emeritus at the University of Virginia in Charlottesville, “but that doesn’t mean that it’s right, or that it makes sense.”

Not enough time has passed since the proposed start date of the Anthropocene to have enough perspective to put the observed changes in the sedimentary record in proper context, Autin says. “A lot of stratigraphers would say that maybe in thousands or millions of years there will be a distinctive demarcation in the rock record at this point in time, but right now it’s a proposal that’s premature.”

Placing the boundary so recently is “dubious, to say the least,” agrees Mike Walker, a professor emeritus at the University of Wales Trinity Saint David who helped establish the golden spike that represents the start of the Holocene. Divisions of geologic time “should have a utility for geoscientists, archaeologists, anthropologists, et cetera,” he says. “I see little of value to the wider science community in an epoch boundary at A.D. 1950.”

The formalization of the Anthropocene is not just scientifically motivated, but also driven by a desire to highlight humankind’s impact on the environment, suggests Lucy Edwards, a geologist with the U.S. Geological Survey in Reston, Va. “It’s a meme,” she says. “The thinking is that if you have a concept and you give it a new word, it carries more weight.”

The motivation behind the newly announced proposal isn’t overly focused on humankind being to blame for recent changes, Zalasiewicz responds. “If we had all the same changes, but caused by something else, like volcanoes or a meteorite or my cat, then it would be just as significant.”

More time isn’t needed to recognize that modern sediments are unique, he adds. After all, he says, if humans had been around 50 years after the environmental catastrophe that wiped out the dinosaurs about 66 million years ago, they would have clearly seen that Earth’s environment and ecology had permanently changed.

To make female pill bugs, just add bacterial genes

ORLANDO, Fla. — When sex chromosomes among common pill bugs go bad from disuse, borrowed bacterial DNA comes to the rescue. Certain pill bugs grow up female because of sex chromosomes cobbled together with genes that jumped from the bacteria.

Genetic analysis traces this female-maker DNA to Wolbachia bacteria, Richard Cordaux, based at the University of Poitiers with France’s scientific research center CNRS, announced September 29 at the International Congress of Entomology.

Various kinds of Wolbachia infect many arthropods, spreading from mother to offspring and often biasing their hosts’ sex ratios toward females (and thus creating even more female offspring). In the common pill bug (Armadillidium vulgare), Wolbachia can favor female development in two ways. Just by bacterial infection without any gene transfer, bacteria passed down to eggs can make genetic males develop into functional females. Generations of Wolbachia infections determining sex let these pill bugs’ now-obsolete female-making genes degenerate. Which makes it very strange that certain populations of pill bugs with no current Wolbachia infection still produce abundant females. That’s where Cordaux and Poitier colleague Clément Gilbert have demonstrated a second way that Wolbachia makes lady pill bugs — by donating DNA directly to the pill bug genes.
The researchers, who share an interest in sex determination, have built a case that Wolbachia inserted feminizing genes into pill bug chromosomes. The bacterial genes thus created a new sex chromosome.

“Incredible,” said Steve Perlman after hearing the talk, not in disbelief but in wonder at the biology. Perlman, of the University of Victoria in Canada, studies symbiosis and parasitism and says this new example of far-flung gene transfer is part of “a big thing in the field now.” Such transfers provide exotic genetic variation that fuels evolutionary processes. Audience members Ellen Martinson and Vincent Martinson, both of the University of Rochester in New York, were themselves coauthors of a 2016 paper describing microsporidian fungus DNA that has become a venom gene in some wasps.

Berries may give yellow woodpeckers a red dye job

To the bafflement of birders, yellow-shafted flickers (Colaptes auratus auratus) sometimes sport red or orange wing feathers.

Scientists have suggested that the birds, which inhabit eastern North America, might be products of genetic variation affecting the carotenoid pigments that produce their flight-feather colors. Alternatively, the birds might be hybrids from mixing with a subspecies that lives in the west, red-shafted flickers (Colaptes auratus cafer). Despite decades of study, no clear-cut explanation has emerged.

It turns out that diet may be to blame. Jocelyn Hudon of the Royal Alberta Museum in Canada and her colleagues tested the red flight feathers from two yellow-shafted flickers and found traces of rhodoxanthin, a deep red pigment found in plants, and a potential metabolite. This suggests that the birds’ bodies break down rhodoxanthin — a clue that the pigment enters the body through food. Spectral and biochemical tests of feathers from museum collections also point to rhodoxanthin and suggest that the pigment may mess with yellow carotenoid production as well.

Yellow-shafted flickers probably pick up the red pigment when they eat berries from invasive honeysuckle plants, which contain the ruby pigment and produce similar red hues in other birds, the researchers write October 12 in The Auk. The plants also happen to produce berries just around the time that flickers molt their flight feathers.