The first picture of a black hole opens a new era of astrophysics

This is what a black hole looks like.

A world-spanning network of telescopes called the Event Horizon Telescope zoomed in on the supermassive monster in the galaxy M87 to create this first-ever picture of a black hole.

“We have seen what we thought was unseeable. We have seen and taken a picture of a black hole,” Sheperd Doeleman, EHT Director and astrophysicist at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., said April 10 in Washington, D.C., at one of seven concurrent news conferences. The results were also published in six papers in the Astrophysical Journal Letters.

“We’ve been studying black holes so long, sometimes it’s easy to forget that none of us have actually seen one,” France Córdova, director of the National Science Foundation, said in the Washington, D.C., news conference. Seeing one “is a Herculean task,” she said.
That’s because black holes are notoriously hard to see. Their gravity is so extreme that nothing, not even light, can escape across the boundary at a black hole’s edge, known as the event horizon. But some black holes, especially supermassive ones dwelling in galaxies’ centers, stand out by voraciously accreting bright disks of gas and other material. The EHT image reveals the shadow of M87’s black hole on its accretion disk. Appearing as a fuzzy, asymmetrical ring, it unveils for the first time a dark abyss of one of the universe’s most mysterious objects.

“It’s been such a buildup,” Doeleman said. “It was just astonishment and wonder… to know that you’ve uncovered a part of the universe that was off limits to us.”

The much-anticipated big reveal of the image “lives up to the hype, that’s for sure,” says Yale University astrophysicist Priyamvada Natarajan, who is not on the EHT team. “It really brings home how fortunate we are as a species at this particular time, with the capacity of the human mind to comprehend the universe, to have built all the science and technology to make it happen.” (SN Online: 4/10/19)

The image aligns with expectations of what a black hole should look like based on Einstein’s general theory of relativity, which predicts how spacetime is warped by the extreme mass of a black hole. The picture is “one more strong piece of evidence supporting the existence of black holes. And that, of course, helps verify general relativity,” says physicist Clifford Will of the University of Florida in Gainesville who is not on the EHT team. “Being able to actually see this shadow and to detect it is a tremendous first step.”

Earlier studies have tested general relativity by looking at the motions of stars (SN: 8/18/18, p. 12) or gas clouds (SN: 11/24/18, p. 16) near a black hole, but never at its edge. “It’s as good as it gets,” Will says. Tiptoe any closer and you’d be inside the black hole — unable to report back on the results of any experiments.
“Black hole environments are a likely place where general relativity would break down,” says EHT team member Feryal Özel, an astrophysicist at the University of Arizona in Tucson. So testing general relativity in such extreme conditions could reveal deviations from Einstein’s predictions.

Just because this first image upholds general relativity “doesn’t mean general relativity is completely fine,” she says. Many physicists think that general relativity won’t be the last word on gravity because it’s incompatible with another essential physics theory, quantum mechanics, which describes physics on very small scales.
The image also provides a new measurement of the black hole’s size and heft. “Our mass determination by just directly looking at the shadow has helped resolve a longstanding controversy,” Sera Markoff, a theoretical astrophysicist at the University of Amsterdam, said in the Washington, D.C., news conference. Estimates made using different techniques have ranged between 3.5 billion and 7.22 billion times the mass of the sun. But the new EHT measurements show that its mass is about 6.5 billion solar masses.

The team has also determined the behemoth’s size — its diameter stretches 38 billion kilometers — and that the black hole spins clockwise. “M87 is a monster even by supermassive black hole standards,” Markoff said.

EHT trained its sights on both M87’s black hole and Sagittarius A, the supermassive black hole at the center of the Milky Way. But, it turns out, it was easier to image M87’s monster. That black hole is 55 million light-years from Earth in the constellation Virgo, about 2,000 times as far as Sgr A. But it’s also about 1,000 times as massive as the Milky Way’s giant, which weighs the equivalent of roughly 4 million suns. That extra heft nearly balances out M87’s distance. “The size in the sky is pretty darn similar,” says EHT team member Feryal Özel.
Due to its gravitational oomph, gases swirling around M87’s black hole move and vary in brightness more slowly than they do around the Milky Way’s. “During a single observation, Sgr A* doesn’t sit still, whereas M87 does,” says Özel, an astrophysicist at the University of Arizona in Tucson. “Just based on this ‘Does the black hole sit still and pose for me?’ point of view, we knew M87 would cooperate more.”

After more data analysis, the team hopes to solve some long-standing mysteries about black holes, such as how M87’s behemoth spews a bright jet of charged particles thousands of light-years into space.

This first image is like the “shot heard round the world” that kicked off the American Revolutionary War, says Harvard University astrophysicist Avi Loeb who isn’t on the EHT team. “It’s very significant; it gives a glimpse of what the future might hold, but it doesn’t give us all the information that we want.”
Hopes are still high for a much-anticipated glimpse of Sgr A*. The EHT team was able to collect some data on the Milky Way’s behemoth and are continuing to analyze that data, in the hopes of adding its image to the new black hole portrait gallery.

Since the appearance of that black hole changes so quickly, the team is having to develop new techniques to analyze the data. “We’re very excited to work on Sgr A*,” Daniel Marrone, an astrophysicist at the University of Arizona in Tucson, said in the Washington, D.C., news conference. “We’re doing that shortly. We’re not promising anything but we hope to get that very soon.”

Studying such different environments could reveal more details of how black holes behave, Loeb says. “The Milky Way is a very different galaxy from M87.”
The next look at the M87 and Milky Way behemoths will have to wait.

Scientists got a lucky stretch of good weather at all eight sites that made up the Event Horizon Telescope in 2017. Then bad weather in 2018 and technical difficulties, which cancelled the 2019 observing run, stymied the team.

The good news is that by 2020, there will be more observatories to work with. The Greenland Telescope joined the consortium in 2018, and the Kitt Peak National Observatory outside Tucson, Ariz., and the NOrthern Extended Millimeter Array (NOEMA) in the French Alps will join EHT in 2020.

Adding more telescopes could allow the team to extend the image, to better capture the jets that spew from the black hole. The researchers also plan to make observations using light of slightly higher frequency, which can further sharpen the image. And even bigger plans are on the horizon: “World domination is not enough for us; we also want to go to space,” Doeleman said.

These extra eyes may be just what’s needed to bring black holes into even greater focus.

All you need to know about the history of black holes

Black holes have been beguiling from the very beginning.

Hinted at as early as the 1780s and predicted by Einstein’s general theory of relativity, they didn’t get the name we know today until the 1960s. Bizarre beasts that squash gobs of matter into infinitely dense abysses, black holes were once thought to be merely a mathematical curiosity.

But astronomers tallied up evidence for black holes’ existence bit by bit, puzzling over where these behemoths live, how they gulp down matter and what their existence means for other physics theories.

For more than a decade, a team of researchers has been engrossed in an ambitious effort to snap a picture of a black hole for the very first time. And now they’ve done it. What better time to think back to black holes’ origins and the journey so far?

Wildfires in boreal forests released a record amount of CO2 in 2021

WASHINGTON — In 2021, wildfires pillaged the world’s carbon-rich snow forests.

That year, burning boreal forests released 1.76 billion metric tons of carbon dioxide, researchers reported March 2 in a news conference at the annual meeting of the American Association for the Advancement of Science.

That’s a new record for the region, which stores about one-third of the world’s land-based carbon. “It’s also roughly double the emissions in that year from aviation,” said earth system scientist Steven Davis of the University of California, Irvine. The trend, if it continues, threatens to make fighting climate change even more difficult.
Boreal forests are part of the taiga, a vast region that necklaces the Earth just south of the Arctic Circle. Blazes in tropical forests like the Amazon tend to garner more attention for their potential to contribute large amounts of climate-warming gases to the atmosphere (SN: 9/28/17). But scientists estimate that on a per area basis, boreal forests store about twice as much carbon in their trees and soils as tropical forests.

Climate change is causing the taiga to warm about twice as fast as the global average. And wildfires are growing more widespread in the region, releasing more of the trapped carbon, which in turn can worsen climate change (SN: 5/19/21).

Davis and his colleagues analyzed satellite data on carbon emissions from boreal regions from 2000 to 2021. In 2021, emissions from boreal wildfires made up a whopping 23 percent of all the CO2 emitted by wildfires around the world, the researchers report in the March 3 Science. In contrast, CO2 emissions during an average year from 2000 to 2021 were about 10 percent.

The record-breaking emissions coincided with widespread heat waves and droughts in Siberia and northern Canada, probably fueled by human-caused climate change.

There’s no data yet to show if 2022 saw a similar surge in emissions. But, Davis said, “there’s not actually that much evidence that this record will stand for long.”

Many Antarctic glaciers are hemorrhaging ice. This one is healing its cracks

Even as some parts of West Antarctica rapidly melt, raising sea level, large swaths of the ice remain stable for the time being. Scientists have now explored one of those stable spots — an isolated nook where the ocean meets the ice. There, the team found the underside of the ice sculpted into strange grooves, ripples and globes.
This environment is “really at the edge” between melting and freezing, says planetary scientist Justin Lawrence. The delicate balance between these two processes is shaping the ice into those strange textures — similar to the way that minerals dissolve and recrystallize to form the beautiful shapes inside limestone caverns.
The result, at Kamb Ice Stream, is that massive cracks in the underside of the ice appear to be freezing back together as the beach ball–sized globes fill in the crevasses from above, Lawrence and colleagues report March 2 in Nature Geoscience.
This refreezing differs from what’s happening at Antarctica’s Thwaites Glacier. There, scientists recently reported that these cracks, known as basal crevasses, are instead sites of rapid melting (SN: 2/15/23).
Understanding what is happening at Kamb will help scientists predict how large parts of the Antarctic coastline that are not currently vulnerable might respond as the world continues to warm due to human-caused climate change. Here’s what’s different about Kamb.
Supercold water underlies the ice at Kamb, slowing melting
In December 2019, two teams of researchers from New Zealand and the United States visited the Kamb Ice Stream — a type of glacier that consists of a channel of faster-moving ice surrounded by slower ice.
Kamb, like much of the rest of the West Antarctic Ice Sheet, rests on a bed that is hundreds of meters below sea level. The New Zealand team used hot water to melt a narrow hole through the ice, just downstream of the “grounding zone,” where the glacier lifts off its muddy bed and floats on the ocean.
The U.S. team then lowered a remote-operated vehicle called Icefin down through 580 meters of ice and into the seawater below. The researchers piloted Icefin as far as a kilometer from the borehole, navigating by video transmitted up through a cable. At the time of the expedition, the team operating Icefin was affiliated with Georgia Tech in Atlanta, but has since moved to Cornell University, except for Lawrence. He now works for Honeybee Robotics, a private company in Altadena, Calif.
Icefin found that much of the seawater beneath Kamb is about 0.3 degrees Celsius above freezing. But directly below the ice sits a colder layer, a mixture of seawater and glacial meltwater just 0.02 to 0.08 degrees C above freezing. Based on these measurements, Lawrence and his colleagues estimate that the exposed underside of Kamb is melting about 26 centimeters per year.
In contrast, recent measurements at the increasingly unstable Thwaites Glacier, about 1,400 kilometers to the northeast, found the seawater at the glacier’s grounding zone 1 to 2 degrees C warmer than at Kamb — and the ice melting 5 to 40 meters per year.
The new finding at Kamb makes sense, says New Zealand team member Christina Hulbe, of the University of Otago, because the seabed at Kamb is relatively shallow. So it is not exposed to the deep, warm ocean currents that are hitting Thwaites.
Much of Antarctica is fringed by cold ocean environments similar to Kamb, she says. “So just understanding that system is important.”
Greenish globs of refrozen ice fill cracks at Kamb
As Icefin glided along, its sonars detected massive basal crevasses up to 55 meters across in the ice above. These cracks probably formed as the floating part of the glacier, the ice shelf, flexes up and down with ocean tides.
Lawrence and his colleagues guided the ROV into one of these cracks, and found its white, icy sidewalls carved into narrow vertical grooves. Icefin ascended 40 meters up, until the grooves suddenly vanished — replaced by a jumble of ice globes, which seemed to fill the upper half of the crevasse.
The globes were greenish — a hue often seen in winter ice that forms on the surface of the ocean. This color makes Lawrence and his colleagues think that the globes form from the ultracold mixture of seawater and meltwater that circulates up into a crack and refreezes, gradually filling in the crack, from the top down, over many decades. They think that this is happening in all of the crevasses they observed. “These crevasses are effectively healing themselves,” he says.
This refreezing process might also explain the strange vertical grooves in the walls of the crevasse, Lawrence speculates. As the water freezes, salt is pushed out of the newly forming ice crystals, creating tiny pockets of highly concentrated brine. That dense brine streams down the walls, melting grooves into the ice — similar to the way that salt causes ice to melt when it’s sprinkled onto a sidewalk in the wintertime.
To observe the crevasses refreezing under Kamb “is pretty exceptional,” says Ginny Catania, a glaciologist at the University of Texas at Austin who was not part of the project. Those cracks “can propagate all the way to the surface and cause calving” of icebergs, she says, which can shrink the ice shelf if it happens too quickly, destabilizing the glacier and raising sea level.
But if the crevasses can actually heal, this could make these ice shelves more resistant to calving — and more stable — than scientists realized, at least as long as the ice continues to be bathed in cold water on the underside.
A string of instruments installed in the hole continued to measure the temperature and salinity of the water beneath the ice — transmitting that data up a cable to the ice’s surface, and back home via satellite until the batteries ran out two years later. Those data show that conditions down below remained cool and comfortable for Kamb.

The fastest claw in the sea belongs to young snapping shrimp

Full-grown snapping shrimp were already known to have some of the fastest claws under the waves. But it turns out they’re nothing compared with their kids.

Juvenile snapping shrimp produce the highest known underwater accelerations of any reusable body part, researchers report February 28 in the Journal of Experimental Biology. While the claws’ top speed isn’t terribly impressive, they go from zero to full throttle in record time.

To deter predators or competitors, snapping shrimp create shock waves with their powerful claws. The shrimp store energy in the flexing exoskeleton of their claw as it opens, latching it in place much like a bow-and-arrow mechanism, says Jacob Harrison, a biologist at Georgia Tech in Atlanta.
Firing the claw and releasing this elastic energy produces a speeding jet of water. Bubbles form behind it and promptly implode, liberating a huge amount of energy, momentarily flashing as hot as the sun and creating a deafening crack (SN: 10/3/01).

But it was unclear how early in their lives the shrimp could use this weaponry. “We knew that the snapping shrimp did this really impressive behavior,” Harrison says. “But we really didn’t know anything about how this mechanism developed.”

While a grad student at Duke University, Harrison and his adviser, biomechanist Sheila Patek, reared bigclaw snapping shrimp (Alpheus heterochaelis) from eggs in the laboratory. At 1 month old, the tiny shrimp — less than a centimeter long — began firing their claws when disturbed. The researchers took high-speed video footage of these snaps and calculated their speed.

The wee shrimp could create the collapsing bubbles just like adults. Despite being a tenth the adults’ size or smaller, the juveniles’ claws accelerated 20 times as fast when firing. This acceleration — about 600 kilometers per second per second — is on “the same order of magnitude as a 9-millimeter bullet leaving a gun,” Harrison says.
Dracula ants (Mystrium camillae) and some termites produce more explosive bites but aren’t pushing against water. The stinging cells of jellyfish launch their venomous harpoons about 100 times as fast, but their firing mechanism is inherently single use. Snapping shrimp, on the other hand, can fire their claws again and again.
The juveniles’ firing and bubble creation weren’t very reliable at the smallest sizes, but the shrimp routinely tried snapping anyway. The team wonders if the young shrimp could be practicing and training the necessary musculature.

If so, that training might ultimately be crucial to the claw’s function, says Kate Feller, a visual ecologist at Union College in Schenectady, N.Y., who studies similarly ultrafast mantis shrimp and was not involved in the new study. “If you were to somehow manipulate the claws so that they couldn’t properly close and they couldn’t snap,” she wonders, “would that affect their ability to develop these mechanisms?”

Understanding the storage of elastic energy in biological materials and how it flows through them is “tricky,” Harrison says. Figuring out how such tiny claws store so much energy without fracturing may help researchers illuminate this superpower.

Here’s how lemon juice may fend off kidney stones

A surprise ingredient may explain how lemon juice puts the squeeze on kidney stones.

Lemons contain nanoparticles that, when fed to rats, block stone formation, scientists report in the Feb. 22 Nano Letters. If the tiny sacs do the same for humans, the nanoparticles might one day offer a way to prevent kidney stones in people, says pharmaceutical scientist Hongzhi Qiao of Nanjing University of Chinese Medicine.

Lemon juice is a well-known home remedy for kidney stones, which form when minerals crystalize and clump up inside the kidney (SN: 9/21/18). These rocky lumps can knock around in the urinary tract, slicing and dicing tissues as they eventually pass out of the body (SN: 10/31/16). “It’s so, so, so painful,” says Jingyin Yan, a nephrologist at Baylor College of Medicine in Houston who was not part of the new study. Patients may feel sharp pain in their back, side or lower abdomen when they pass a stone, she says. “People describe it as worse than delivering a baby.”
Though some medications can help treat kidney stones, many people end up needing surgery to remove them, says Thomas Chi, a urologist at the University of California, San Francisco, also not part of the study. People often imagine kidney stones as tiny pebbles, but sometimes they bulk up like boulders, he adds. “I’ve taken out stones the size of your fist.”

That’s why prevention is key. Scientists already knew that citric acid, which gives lemons their sour power, may do the trick by binding to the minerals that make up stones. But drinking mouth-puckering lemon juice is not so comfortable for patients, Qiao says.

A 2022 clinical trial found that kidney stone patients had trouble downing 120 milliliters — about a half cup — of lemon juice per day. Swilling loads of lemonade can cause dental problems, too. Chi has had patients drink so much that the acidic liquid ate away at their teeth.

So Qiao and colleagues looked for other, more palatable lemon-derived ingredients that might help prevent kidney stones. Inside edible and medicinal plants like ginseng, grapefruit and dandelion, his team has found extracellular vesicle-like nanoparticles, tiny sacs stuffed with molecules including fat, protein and DNA.
These nanoparticles exist in lemon juice, too­­ — and the team fed them to rats that had also ingested a substance that promotes kidney stone growth. The zesty particles slowed stone formation, Qiao and colleagues found. The finding suggests these particles curb development of calcium oxalate crystals, the most common culprit of kidney stones. The particles can also soften the stones and make them less sticky, the team showed.

The new work challenges the conventional wisdom on how lemon juice works to combat kidney stones, Chi says. Using lemon nanoparticles to treat people is still a long way off, but the team’s results hold promise, he says. “The faster you can bring a finding like this towards a human clinical trial, the better.”

‘We Are Electric’ delivers the shocking story of bioelectricty

It took just a 9-volt battery and a little brain zapping to turn science writer Sally Adee into a stone-cold sharpshooter.

She had flown out to California to test an experimental DARPA technology that used electric jolts to speed soldiers’ sniper training. When the juice was flowing, Adee could tell. In a desert simulation that pit her against virtual bad guys, she hit every one.

“Getting my neurons slapped around by an electric field instantly sharpened my ability to focus,” Adee writes in her new book, We Are Electric. That brain-stimulating experience ignited her 10-year quest to understand how electricity and biology intertwine. And she’s not just talking neurons.
Bioelectricity, Adee makes the case, is a shockingly under­explored area of science that spans all parts of the body. Its story is one of missed opportunity, scientific threads exposed and abandoned, tantalizing clues and claims, “electroquacks” and unproven medical devices — and frogs. Oh so many frogs.

Adee takes us back to the 18th century lab of Luigi Galvani, an Italian scientist hunting for what gives animals the spark of life. His gruesome experiments on twitching frog legs offered proof that animal bodies generate their own electricity, an idea that was hotly debated at the time. (So many scientists repeated Galvani’s experiments, in fact, that Europe began to run out of frogs.)

But around the same time, Galvani critic Alessandro Volta, another Italian scientist, invented the electric battery. It was the kind of razzle-dazzle, history-shaking device that stole the spotlight from animal electricity, and the fledgling field fizzled. “The idea had been set,” Adee writes. “Electricity was not for biology. It was for machines, and telegraphs, and chemical reactions.”
It took decades for scientists to pick up Galvani’s experimental threads and get the study of bioelectricity back on track. Since then, we’ve learned just how much electricity orchestrates our lives, and how much more remains to be discovered. Electricity zips through our neurons, makes our hearts tick and flows in every cell of the body. We’re made up of 40 trillion tiny rechargeable batteries, Adee writes.

She describes how cells use ion channels to usher charged molecules in and out. One thing readers might not expect from a book that illustrates the intricacies of ion channels: It’s surprisingly funny.
Chloride ions, for example, are “perpetually low-key ashamed” because they carry a measly -1 charge. Bogus medical contraptions (here’s looking at you, electric penis belts) were “electro-foolery.” In her acknowledgements, Adee jokes about the “life-saving powers of Voltron” and thanks people for enduring her caffeine jitters. That energy thrums through the book, charging her storytelling like a staticky balloon.

Adee is especially electrifying in a chapter about spinal nerve regeneration and why initial experiments juddered to a halt. Decades ago, scientists tried coaxing severed nerves to link up again by applying an electric field. The controversial technique sparked scientific drama, but the idea of using electricity to heal may have been ahead of its time. Fast-forward to 2020, and DARPA has awarded $16 million to researchers with a similar concept: a bio­electric bandage that speeds wound healing.

Along with zingy Band-Aids of the future, Adee describes other sci-fi–sounding devices in the works. One day, for example, surgeons may sprinkle your brain with neurograins, neural lace or neural dust, tiny electronic implants that could help scientists monitor brain activity or even help people control robotic arms or other devices (SN: 9/3/16, p. 10).

Such implants bring many challenges — like how to marry electronics to living tissue — but Adee’s book leaves readers with a sense of excitement. Not only could bioelectricity inspire new and improved medical devices, it could also reveal a current of unexpected truths about the body.

As Adee writes: “We are electrical machines whose full dimensions we have not even yet dreamed of.”

Nepal quake’s biggest shakes relatively spread out

The April 25 Nepal earthquake killed more than 8,000 people and caused several billion dollars in damage, but new research suggests the toll could have been a lot worse.

GPS readings taken during the quake indicate that most of the tremors vibrated through the ground as long shakes rather than quick pulses. That largely spared the low-lying buildings that make up much of Nepal’s capital, Kathmandu, geophysicists report online August 6 in Science. Those same low-frequency rumbles, though, toppled Kathmandu’s handful of larger buildings, such as the historic 62-meter tall Dharahara Tower.

Understanding why the fault produced a quake at such low frequencies could help seismologists better identify future seismic hazards, says Jean-Philippe Avouac of the University of Cambridge. “This could be some good news not only for this major fault, but also potentially for similar faults around the world.”

Nepal sits over a tectonic boundary where the Indian Plate slips under the Eurasian Plate. At places, the two plates snag together, building stress that abruptly releases as an earthquake (SN: 5/16/15, p. 12).
Earthquakes stronger than April’s magnitude 7.8 shakedown have hit Nepal before, including a magnitude 8.0 quake in 1934. Despite the recent quake’s feebler intensity, its trembles somehow destroyed large buildings that had previously endured mightier earthquakes.

Avouac and colleagues monitored April’s quake using a network of 35 solar-powered GPS stations, the first time such an accurate system was in place during a major quake on this type of fault. The stations measured ground movements five times each second. The earthquake shook most intensely at 0.25 hertz, or one full wave every four seconds, with only moderate shaking above 1 hertz, or one or more complete waves each second.

A building is most vulnerable when shook near its resonance frequency, a range where even small outside forces can result in big vibrations in the structure. Because taller structures have lower resonance frequencies, the April quake’s low-frequency rumbles caused larger buildings to sway and crumble while largely sparing smaller dwellings, the researchers found.

The low frequencies resulted from the smooth and relatively long duration of the tectonic slipping that initiated the quake, the researchers propose. The low-frequency waves then echoed across the region and produced protracted violent shaking.

Determining where future low-frequency quakes will strike could save lives by identifying which building types are most vulnerable to collapse, says geologist Kristin Morell of the University of Victoria in Canada. “These are things that should be built into building codes.”

Ancestral humans had more DNA

A new atlas of human genetic diversity reveals what human ancestors’ DNA may have looked like before people migrated out of Africa.

Ancestral humans carried 40.7 million more DNA base pairs than people do today, researchers report online August 6 in Science. That’s enough DNA to build a small chromosome, says study coauthor Evan Eichler, an evolutionary geneticist at the University of Washington in Seattle.

Human ancestors in Africa jettisoned 15.8 million of those DNA base pairs — information-carrying building blocks of DNA often referred to by the letters A, T, G and C — before dispersing around the globe, the researchers discovered. As people left Africa and spread to other continents, they dropped more chunks of DNA. Eichler and colleagues have followed these genetic bread crumbs to map relationships among 125 human groups worldwide.
People didn’t just lose DNA. They also gained some. Compared with chimpanzees and orangutans, people have 728 extra pieces of DNA created when portions of the human genetic instruction book, the genome, were copied. Everyone has at least three copies of those duplicated bits, although the exact number varies from person to person.

Previous maps of human genetic diversity have usually not marked the yawning chasms left by deletions or the new territory created by duplications. Most diversity maps have focused on single DNA base pair changes, often called single nucleotide polymorphisms, or SNPs. But all the SNPs together comprise only 1.1 percent of the genome. Duplications and deletions, collectively known as copy number variants, have shaped more than 7 percent of the human genome.

Story continues below infographic
Because duplications and deletions involve larger swaths of DNA than SNPs do, their influence on human evolution may also be bigger. Both duplications and deletions have been implicated in shaping human characteristics, such as bigger brains (SN: 3/21/15, p. 16; SN: 4/9/11, p. 15).

But researchers “can’t answer the question yet of whether what makes us human is in what was lost or what was duplicated,” says David Liberles, a computational evolutionary biologist at Temple University in Philadelphia.

Eichler’s choice is clear. “Duplications rock,” he says. “They affect more base pairs in the human genome than any other type of variation.” Duplications span 4.4 percent of the genome, while deletions represent 2.77 percent. And duplications tend to involve genes, while deletions often fall in spaces between genes, the researchers found.

His team flagged many duplications as possible medical and evolutionary points of interest. For instance, some groups of people have up to six copies of CLPS genes, which encode pancreatic enzymes that may help reduce blood sugar levels. Some African groups carry duplications of genes that may protect against sleeping sickness caused by trypanosome parasites.

Another attraction is a very large duplication of about 225,000 base pairs that Papua New Guineans inherited from Denisovans, an extinct group of hominids related to Neandertals. The colossal hunk of DNA contains two microRNA genes. MicroRNAs are small molecules that help regulate protein production. Eichler and colleagues calculate that the original duplication happened about 440,000 years ago in Denisovans. It was passed to Papuans and some other Melanesians about 40,000 years ago when their ancestors interbred with Denisovans. Now, about 80 percent of Papuans carry the duplication. Eichler speculates that the duplication may have given Papuan ancestors some evolutionary advantage, although what that advantage might be isn’t known.

While the researchers make a compelling case that duplications and deletions may play an important role in evolution, the team has provided little evidence that copy number variants really determine trait differences between groups, says Edward Hollox, a human geneticist at the University of Leicester in England. “It’s almost a paper saying, ‘Look, isn’t this interesting?’ But why it’s interesting they haven’t quite gotten to the bottom of.” Still, Hollox says the map will point other researchers to parts of the genome where evolution may have left its mark.

Claim of memory transfer made 50 years ago

Memory Transfer Seen — Experiments with rats, showing how chemicals from one rat brain influence the memory of an untrained animal, indicate that tinkering with the brain of humans is also possible.

In the rat tests, brain material from an animal trained to go for food either at a light flash or at a sound signal was injected into an untrained rat. The injected animals then “remembered” whether light or sound meant food.
Update:
After this report, scientists from eight labs attempted to repeat the memory transplants. They failed, as they reported in Science in 1966.

Science fiction authors and futurists often predict that a person’s memories might be transferred to another person or a computer, but the idea is likely to remain speculation, says neuroscientist Eric Kandel, who won a Nobel Prize in 2000 for his work on memory. Brain wiring is too intricate and complicated to be exactly replicated, and scientists are still learning about how memories are made, stored and retrieved.